

Port of San Francisco

Dry Dock EUREKA Structural Assessment Report June 2017

WATER | ENERGY & RESOURCES | ENVIRONMENT | PROPERTY & BUILDINGS | TRANSPORTATION

Table of Contents

1.	Exec	utive Summary	4
2.	Introd	duction	4
	2.1	Scope of Work	4
	2.2	Description	4
	2.3	Basis of Assessment	7
3.	Time	line of Dry Dock EUREKA	8
4.	Dry D	Dock Inspection	9
	4.1	Pontoon Deck Conditions	10
	4.2	Interior Compartment Conditions	12
	4.3	Hull Condition	14
5.	Struc	tural Assessment	16
	5.1	Discussion of Structural Condition	16
	5.2	Structural Evaluation	18
	5.3	Current Vessel Lifting Capacity	21
6.	Corro	osion Assessment	21
	6.1	Testing Methodology	21
	6.2	Tank 5A	22
	6.3	Tank 5	23
	6.4	Tank 6A	25
	6.5	Tank 6	27
	6.6	Tank 7	28
	6.7	Tank 8	29
	6.8	Tank 9	30
	6.9	Tank 10	32
	6.10	Tank 20A	33
	6.11	Tank 22	35
	6.12	Tank 23	36
7.	Conc	eptual Repairs	37
	7.1	Short-Term Repair Strategies	37
	7.2	Long-Term Repair Strategies	38
8.	Corro	osion Protection	39
	8.1	Anodes	39
	8.2	Coating	39

9.	Cost Estimate for Repair Concepts	39
10.	Conclusions and Recommendations	40

Figure Index

Figure 1: AFDM 14 at Naval Base San Diego (1986)4
Figure 2: Dry Dock EUREKA Plan6
Figure 3: Typical Floating Dry Dock Section
Figure 4: Typical Pontoon Deck Corrosion11
Figure 5: Pontoon Deck Stiffener Damage Example12
Figure 6: Undamaged Serrated Stiffener Example12
Figure 7: Typical Observations on Transverse Framing13
Figure 8: Interior Shell Plates and Anodes13
Figure 9: Corrosion Observed on Framing at Keel14
Figure 10: Dry Dock EUREKA Plan14
Figure 11: Pontoon Deck Framing–Transverse and Longitudinally Stiffened Panels17
Figure 12: Transverse Bending Moment Diagram
Figure 13: Partial Load with Max Hydrostatic head19
Figure 14: SAP2000 Model – Pontoon Frame19
Figure 15: SAP2000 Loading Diagram20
Figure 16: Process for Typical UT Measurement
Figure 17: Tank 5 Corroded Members25
Figure 18: Typical Corrosion at Roof of Tank 6A27
Figure 19: Tank 9 Wall
Figure 20: Tank 20A Side Wall and Diagonal

Table Index

Table 1: Dry Dock EUREKA Displacement	7
Table 2: Summary of Condition and Ratings	8
Table 3: Dry Dock EUREKA Hull UT Gauge Readings	15
Table 4: Observed Keel Mudline Elevations	16
Table 5: Tank 5A UT Summary	22

GHD-Telamon Engineering Consultants, Inc | Report for Port of San Francisco – Drydock Eureka Structural Assessment

Table 6: Tank 5A Measured Thicknesses	23
Table 7: Tank 5 UT Summary	23
Table 8: Tank 5 Measured Thicknesses	24
Table 9: Tank 6A UT Summary	25
Table 10: Tank 6A Measured Thicknesses	26
Table 11: Tank 6 UT Summary	27
Table 12: Tank 6A Measured Thicknesses	28
Table 13: Tank 7 UT Summary	28
Table 14: Tank 7 Measured Thicknesses	29
Table 15: Tank 8 UT Summary	29
Table 16: Tank 8 Measured Thicknesses	
Table 17: Tank 9 UT Summary	31
Table 18: Tank 9 Measured Thicknesses	31
Table 19: Tank 10 UT Summary	32
Table 20: Tank 10 Measured Thicknesses	33
Table 21: Tank 20A UT Summary	33
Table 22: Tank 20A Measured Thicknesses	34
Table 23: Tank 22 UT Summary	35
Table 24: Tank 22 Measured Thicknesses	36
Table 25: Tank 23 UT Summary	36
Table 26: Tank 23 Measured Thicknesses	37

1. Executive Summary

Dry Dock "EUREKA" is currently in poor condition and cannot be rated to safely lift any vessel load. At numerous locations, the pontoon deck plate exhibits significant section loss due to corrosion, along with cracks and fractures in the underdeck serrated stiffeners. This finding is in general agreement with the January 2017 commercial inspection conducted by Heger Dry Dock, Inc.

2. Introduction

2.1 Scope of Work

GHD-Telamon Engineering Consultants, Inc (TECI) Joint Venture was retained by the Port of San Francisco to perform an independent inspection and analysis of Dry Dock "EUREKA" to determine its lifting capacity and propose short-term and long-term repairs. The inspection and analysis would consist of corrosion engineers performing ultrasonic thickness (UT) meter readings, a dive team for underwater assessments, and structural engineers analyzing the structure using finite element modeling. Additionally, GHD-TECI was tasked to review and summarize the previous reports and certifications.

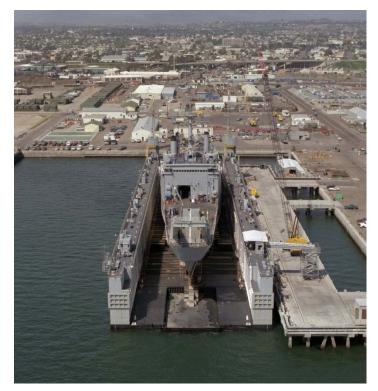


Figure 1: AFDM 14 at Naval Base San Diego (1986)

2.2 Description

The "EUREKA" dry dock, formerly known as "STEADFAST" (AFDM 14), was built by Pollock-Stockton Shipbuilding in Stockton, California. The dock was completed in July of 1945. The dock is a Frederick Harris design three piece welded steel sectional dock capable of self docking.

At the time of construction, the dock was designated as YFD 71 and rated capable of lifting a maximum ship of 17,500 long tons. On February 1, 1983 the dock was reclassified as an AFDM.

The dock was operated at the Naval Station in San Diego, California before it was obtained by the city of San Francisco in 1998. The dock was previously operated by BAE Systems, but as of January 2017 it is operated by Puglia Engineering.

Dry Dock "EUREKA" currently is moored to a stationary pier at the Puglia Shipyard at the Port of San Francisco. The dry dock is oriented with the apron and access ramp at the south and the port side moored to the adjacent pier.

The "EUREKA" is one of two floating dry docks owned by the Port of San Francisco and located at the San Francisco Shipyard at Pier 70. Both dry docks are included in long-term lease agreements with ship repair contractors (tenant). The tenants are responsible for the maintenance and upkeep of the dry docks, along with bi-annual inspection and certification. The most recent inspection took place in January 2017 and did not pass certifications for lifting operations.

The vessel has been recently used at the shipyard to dry dock liquid bulk barges, United States Coast Guard (USCG) cutters, tugs and Navy Sealift command ships.

GHD-TECI completed the ultrasonic thickness (UT) testing and external corrosion assessment survey of selected ballast tanks on March 2 and March 3, 2017, and spot checks of the pontoon deck plate was surveyed on March 8, 2017. To inspect the hull, a 4-person dive team from Collins Engineering, a specialty contractor experienced in underwater inspections, performed an underwater inspection from March 6 through March 10, 2017.

Principal Characteristics of Dry Dock "EUREKA":

- Length over pontoons: 528'-0
- Length Overall: 569'-0"
- Breadth overall: 118'-0"
- Width Between Wing Walls (molded): 90'-0"
- Clear Width Between Fenders: 86'-0"
- Height Overall: 52'-2"
- Height of Wing Deck above Pontoon Deck: 36'-0"
- Height of Pontoon Deck at Centerline: 16'-2"
- Design Draft over Pontoon Deck: 33'-0"
- Lightship Draft: 5'-0"
- Current Maximum Draft over Pontoon Deck¹: 12'-0"

Note 1: The shipyard noted that the maximum achievable submergence draft of the dock has decreased to about 12ft over the pontoon deck due to sediment accumulation in the submergence pit.

The pontoon sections are divided into a total of 16 ballast compartments (8 per side) and 10 centerline void tanks. The dock is subdivided into 16 ballast tanks, seven trim tanks, seven buoyancy chambers, plus various machinery rooms and miscellaneous compartments on the second deck (safety deck).

A plan of the deck and compartments is shown below as Figure 2.

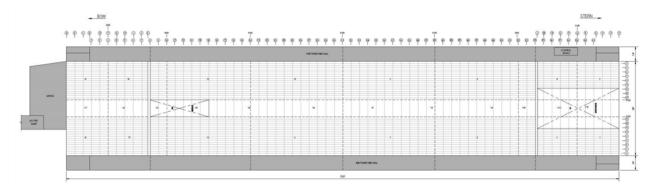
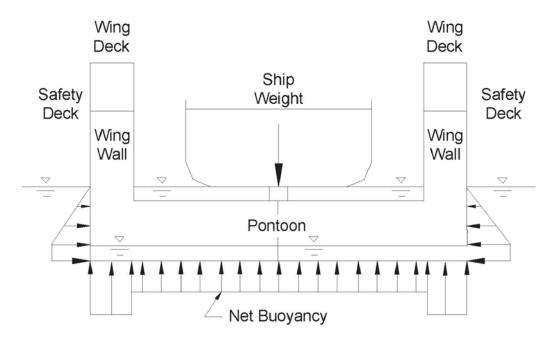



Figure 2: Dry Dock EUREKA Plan

A typical floating dry dock is shown in section as Figure 3 below.

Figure 3: Typical Floating Dry Dock Section

Floating Dry Dock Displacement

Displacement of a floating vessel is equivalent to the weight of the water it displaces; therefore, displacement is another way of expressing the weight of the vessel itself. The displacement of a dock without a ship in dock equals the gross weight of the dock. The displacement of a loaded dock equals the gross weight of the dock plus the weight of the ship.

The draft of the EUREKA dock varies with the displacement. Table 1 indicates the displacement of the dock at various pontoon freeboards and corresponding drafts (pontoon freeboard is measured at the lowest point of pontoon deck, which occurs at the sidewall.

The total weight of the EUREKA structure is estimated to be 6,200 long tons. It is estimated that approximately 600 long tons of residual water cannot be pumped out by the main deballasting pumps. This produces a minimum gross weight of 6,800 long tons. The EUREKA was originally rated as a 14,000-ton lifting capacity drydock at 18-inch freeboard when keel block loadings are limited to 27.5 long tons per foot average and 33 long tons per foot maximum.

Pontoon Freeboard	Dock Draft	Displacement (long tons)
10'-8"	5'-0"	5,400
9'-8"	6'-0"	7,050
8'-8"	7'-0"	8,750
7'-8"	8'-0"	10,450
6'-8"	9'-0"	12,200
5'-8"	10'-0"	13,900
4'-8"	11'-0"	15,650
3'-8"	12'-0"	17,450
2'-8"	13'-0"	19,200
1'-8"	14'-0"	20,950
1'-6"	14'-2"	21,300
0'-8"	15'-0"	22,800
0'-0"	15'-8"	24,000

Table 1: Dry Dock EUREKA Displacement

2.3 Basis of Assessment

The following documents were referenced in the condition assessment of Dry Dock EUREKA.

- Structural and Operational Inspection Report for EUREKA, Heger Dry Dock, Inc., January 2015.
- UT/VT Survey Report for EUREKA, International Inspection, May 2015.
- EUREKA Dry Dock Ultrasonic Thickness Inspection, DRS Marine Inc., December 2016.
- Tandem Barge Docking Feasibility Review, Heger Dry Dock, Inc., January 2017.
- Commercial Inspection for EUREKA Floating Dry Dock, Revision 1, Heger Dry Dock, Inc., January 2017.

The following standards were used in the inspection and assessment of Dry Dock EUREKA:

- US Coast Guard Barge Inspection Guide Surface Forces Logistics Center (SFLC) Standard Specification 8634.
- General Information Book for Auxiliary Floating Dry Dock (AFDM) 14 "Steadfast".
- American Bureau of Shipping (ABS), Rules for Building and Classing Steel Floating Dry Docks, 2009.
- NAVSEA Design Data Sheet DDS 100-4, 1982.

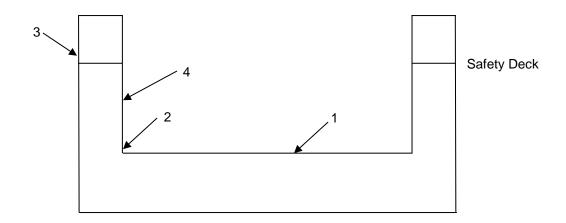
3. Timeline of Dry Dock EUREKA

Year	Condition	Rating	Notes
1945	New	17,500 LT	Constructed in Stockton, CA, and initially designated YFD 71. ¹
1981- 1985	Renewed	N/A	Major rework and repair at a cost of over \$20 million. Reclassified as AFDM 14 "Steadfast" in 1983. ¹
1995		N/A	All ballast and trim tanks were sandblasted to white metal and coated with long-lasting preservative. ¹
1997		N/A	Towed to Suisun reserve fleet and moth balled. ¹
1999		N/A	Sold to City of San Francisco, and towed to San Francisco dry dock. ¹
2000	Excellent	N/A	Condition survey found the dry dock to be in excellent condition and well-maintained. ¹
2004		N/A	The 2006 certification noted that there was an inspection performed along with underwater inspection in 2004. GHD-TECI and the Port of San Francisco did not have access to records from this inspection. ²
2006		14,000 LT 33 LT/ft	While the certification checklist noted that all structural components were in satisfactory condition, it was based on the 2004 inspection. ²
2008		14,000 LT 33 LT/ft	While the certification checklist noted that all structural components were in satisfactory condition, it was based on the 2004 inspection. ³

Table 2: Summary of Condition and Ratings

Year	Condition	Rating	Notes
2010		14,000 LT 33 LT/ft	While the certification checklist noted that all structural components were in satisfactory condition, it was based on the 2004 inspection. There was an inspection that used UT sounding every five feet along the 6 bands. Additionally, a 3-man dive team performed underwater inspection of the hull. They noted that the hull was in good condition with observable coatings in good condition. The sacrificial anodes at the intake screens were 50% used. ⁴
2012	Fair to Good	14,000 LT 27 LT/ft	Pontoon deck plating has little to no paint protection remaining, condition varies from moderate rust to heavy rust with pitting, scaling, and holes. Pinholes are noted in some areas at the underside of the pontoon deck and stiffeners. Heger inspected the ballast tanks and noted the steel is structurally in good condition with no signs of overstressing. ⁵
2015	Fair to Good	14,000 LT 27 LT/ft	Pontoon deck plating has little to no paint protection remaining, condition varies from moderate rust to heavy rust with pitting, scaling, and holes. Heger inspected the ballast tanks and noted stress cracks at the serrated stiffeners inside the ballast tanks. They counseled the operator to develop a plan to repair or replace these stiffeners on an ongoing basis. ⁶
2017	Poor	Not Certified	Widespread fractures at the under deck serrated stiffeners and a significant portion of the deck plate exhibit 25%-50% corrosion. All anodes have wasted away. ⁷

Sources:


1. K.D. Moore Associates Underwriting Survey of Condition & Value of Dry Dock "Eureka" dated February 11, 2000

- 2. USCG Certification, dated December 21, 2006
- 3. USCG Certification, dated December 15, 2008
- 4. USCG Certification, dated December 15, 2010
- 5. Structural and Operational Inspection Report of Dry Dock "Eureka", by Heger Dry Dock, Inc, dated December 2012
- 6. Structural and Operational Inspection Report of Dry Dock "Eureka", by Heger Dry Dock, Inc, dated January 2015
- 7. Commercial Inspection for Eureka Floating Dry Dock, by Heger Dry Dock, Inc, dated January 2017

4. Dry Dock Inspection

Previous inspections and condition assessment of Dry Dock EUREKA observed that the dry dock has extensive deterioration in the pontoon deck and longitudinal stiffeners due to corrosion and heavy use. Steel hulled dry docks typically deteriorate at varying rates throughout the hull. Many times badly corroded steel will be found near steel with little to no corrosion.

- In general, certain areas of the dock generally corrode faster than other locations. These areas of greater corrosion rates typically found on a steel floating dock include: Pontoon deck, usually one of the first areas to show heavy corrosion.
- 2. Intersection of the inboard wing wall and the pontoon deck.
- 3. Intersection of the safety deck and the wing wall side shell plate and/or vertical frames (from the safety deck up about 6 inches)
- 4. Internal portion of the wing wall from the pontoon deck level up to about 10 feet below the safety deck.

The pontoon deck is generally one of the first areas to show deterioration. Heavy corrosion is evident on EUREKA, particularly due to large amounts moisture trapped on the underside of the pontoon deck. Rust scale is being continually worn away on the deck plate by high traffic, heavy wear, and recoating, therefore ultrasonic testing (UT) of the deck plate is usually performed to confirm remaining thickness.

4.1 **Pontoon Deck Conditions**

GHD-TECI engineers observed that the top surface of the pontoon deck exhibits numerous locations of failed coating and loss of steel. A typical photo is shown as Figure 4 below.

Figure 4: Typical Pontoon Deck Corrosion

GHD-TECI obtained ultrasonic thickness gauge measurements at several pontoon deck locations to confirm the findings of the 2015 UT survey. Results of GHD-TECI's confirmation survey showed plate thicknesses ranging from 0.45 inch to 0.24 inch. This represents a loss from the original steel thickness of up to 50%. These readings are similar to those taken in the 2015 survey.

The EUREKA's deteriorating pontoon deck structure presents two issues. The pontoon deck plate is experiencing significant diminution in material thickness. The deck plate is typically a floating dry dock's most susceptible region to metal loss as the pontoon deck experiences the highest amount of wear due to work performed on the docked vessels, vehicular traffic and high exposure to weathering effects such as rain and sun. These factors ultimately cause accelerated coating failure and corrosion of the deck plating. The diminution of the pontoon deck is of particular concern as it acts as one of the critical structural components in supporting a ship load during a lifting operation on a floating dry dock The loss of plate thickness on a longitudinally strengthened pontoon deck, such as EUREKA's, exponentially decreases the compressive buckling strength of the pontoon deck. Prior ultrasonic thickness surveys and confirmed by GHD-TECI showed a significant number of readings (nearly half of all readings) with corrosion in the range of 25% - 50% on the original 7/16-inch pontoon deck plating. The corroded plate in its current condition drastically reduces the transverse strength of the dock

The second structural issue is the pontoon deck's longitudinal stiffeners are the serrated channel type, commonly used in the AFDM Harris docks constructed in the World War II era. This channel type is known for flaws associated with the serrated channel type stiffener. The serrated channel design optimized the steel material to strength ratio but also introduced high stress concentration zones at the corners of the serrated notches and the connection of the stiffener to the pontoon deck plating.

This structural element is susceptible to failures in way of the stress concentrations typically taking the form of localized deck corrosion or fractures in the channel web. The fatigue failures are commonly prominent on the pontoon deck stiffeners that not only have to resist hydrostatic head pressures, but are also exposed to cyclical loading due to equipment and vehicles. The serrated channel failures drastically reduce the strength of the stiffener. If not repaired promptly, adjacent stiffeners become more susceptible to failure due to an increased local strength demand.

In the 2015 inspection, it was noted the pontoon deck's serrated channels were beginning to fracture. In response, an in-depth visual survey mapping out the extent of the deck stiffener fractures was performed in May 2015. A pontoon deck repair plan was outlined in the previous inspection reports. By the time of the 2017 dock inspection, it was observed that no repairs had been made to the fractured stiffeners and the failures had become more widespread bringing uncertainly to the dock's ability to resist head pressure and vehicular traffic loads.

An example of heavy corrosion damage to the channel stiffeners is shown in Figure 5 below, compared against an undamaged stiffener shown in Figure 6.

Figure 5: Pontoon Deck Stiffener Damage Example

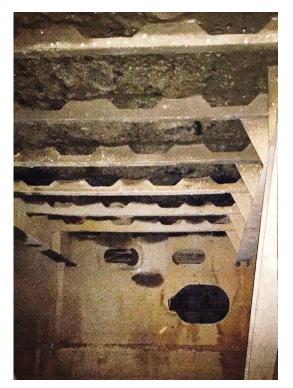


Figure 6: Undamaged Serrated Stiffener Example

4.2 Interior Compartment Conditions

GHD-TECI engineers conducted an assessment of the pontoon interior compartments by performing a nondestructive evaluation using ultrasonic thickness measurements of localized bulkhead and hull plate thickness, wide flange framing members, corrosive pitting examination, and visual assessment of corrosion-related damage to the steel plates and frame member surface. Eight (8) thickness measurements were recorded at each of the locations measured which was used to determine average steel thickness at each location tested. Beam flange thicknesses were measured using a digital micrometer. Flanges were cleaned and prepared for assessment using a wire brush with a scraping tool to remove residual contaminants and corrosion product, where applicable. The interior compartments were found to be in fair condition with some steel loss noted at several locations.



Figure 7: Typical Observations on Transverse Framing

Figure 8: Interior Shell Plates and Anodes

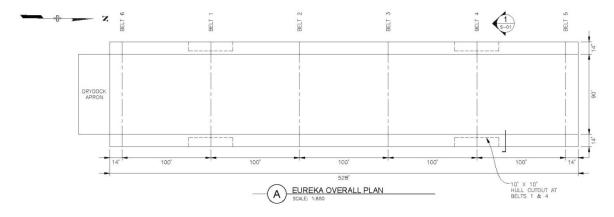


Figure 9: Corrosion Observed on Framing at Keel

4.3 Hull Condition

An underwater condition assessment of Dry Dock EUREKA was conducted from March 5th to March 10th, 2017 to evaluate the condition of the hull. Overall, the hull was estimated to be in fair condition with minor deterioration consisting of section loss as ascertained by ultrasonic thickness gauge measurement. The underwater condition assessment report is included in Appendix D.

The underwater inspection consisted of Level I, II and III level investigation. At the time of the inspection the dry dock ballast tanks were emptied of water such that the primary hull chine was at the water surface. Level II cleanings to gather Level III ultrasonic thickness (UT) gauge readings were taken along "belt lines" as shown in Figure 10 below.

Figure 10: Dry Dock EUREKA Plan

Belt lines 1 to 5 were chosen based on the locations used to gather UT readings by DRS Marine for their December 2016 inspection. Belt line 6 was added for this inspection to further investigate the hull condition. A fixed line was placed along each belt line to guide the engineer-diver while taking UT readings and to ensure that UT readings could be gathered along the same line during future inspections. Level I visual/tactile inspection for the entire submerged portion of the hull was performed by using a tether line linking the engineer-diver to the guide line to facilitate sweeping of the hull for 50 feet in both directions away from the guide line and oriented parallel to the long axis of the hull. Engineer-divers were deployed from the D/V James Eads which was moored to the starboard (west) side of the dry dock at each belt line.

The Hull of Dry Dock 1 was found to be in FAIR condition. The average distance between UT readings and the maximum and minimum UT reading values for each belt line was as shown in Table 3 below.

Belt Line	Average Distance Between UT Readings	Max UT Reading	Min UT Reading	Steel Thickness Remaining
	ft-in	in	in	%
1	5'-2"	0.415	0.315	72.1%
2	3'-8"	0.430	0.325	74.3%
3	3'-6"	0.420	0.345	78.9%
4	4'-6"	0.430	0.305	69.7%
5	4'-0"	0.435	0.320	73.1%
6	4'-4"	0.435	0.385	88.0%

Table 3: Dry Dock EUREKA Hull UT Gauge Readings

We note that maximum UT reading values exceeding 0.437 inches (design hull plate thickness) were excluded from the table above. These greater than design thickness values are attributed to weldments on the interior of the hull being picked up by the UT gauge and are excluded as they are not indicative of the current hull plate condition. Complete UT gauge readings are given in Appendix D.

In general, there was little to no observable evidence of corrosion on the exterior submerged portion of the dry dock hull. Marine growth present on the hull consisted of various types of hard and soft marine flora and fauna including muscles. Marine growth fully covered the hull within a perimeter zone that extended from the hull edge in towards the keel for a distance of 20 feet around the full perimeter of the hull. Between this perimeter zone and nearer to the keel line marine growth was sparser and covered the hull in small clumps that were randomly distributed.

Plate welds and the hull coating system appeared to be intact and functioning as intended. Upon cleaning, hull coating presented with a reddish color indicating the presence of anti-fouling properties. Sacrificial anodes were randomly encountered during the course of the inspection but were not explicitly part of the inspection scope. Observed anode conditions in combination with the

overall presentation of exterior hull condition indicate that, although the anodes are being consumed and show loss of section, they are functioning as intended. Photographs of typical conditions as described above are given in Appendix C.

During the course of hull inspection, mudline depths were gathered beneath the keel for each belt line by using the pneumo-fathometer system integrated into the engineer-diver's umbilical. The time and date that depths were taken were also recorded for subsequent comparison to local tide tables and calculation of the mudline elevation as compared to a mean-lower-low-water (MLLW) datum.

Mudline elevations below the keel are as shown in Table 4 below.

Belt Line	Date/Time	Keel Depth (ft)	M/L Depth (ft)	M/L Elev. (ft)
1	3/7/17 @ 1300 hrs	6	24	23
2	3/7/17 @ 1532 hrs	6	26	25
3	3/8/17 @ 1206 hrs	6	27	24
4	3/8/17 @ 1430 hrs	6	27	26
5	3/9/17 @ 1102 hrs	6	33	28
6	3/6/17 @ 1022 hrs	6	30	27

Table 4: Observed Keel Mudline Elevations

Note: M/L Elevation calculated using tide station 9414334 Protero Point, CA, MLLW datum and rounding to the nearest foot.

5. Structural Assessment

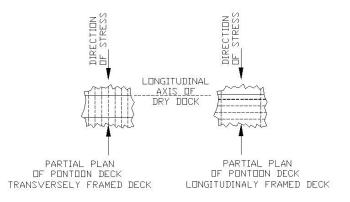
5.1 Discussion of Structural Condition

Dry dock vessel EUREKA was originally rated with a nominal lifting capacity of 14,000 LT (long tons). In the past it has been certified for lifting 14,500 LT with evenly distributed keel loading of 27.5 LT per foot arranged along the centerline of the vessel. Recent inspections and tests to determine the degree of steel loss through corrosion as discussed in Section 4 of this report have led to significant derating of EUREKA.

Several reports as listed in Section 3 discuss the revised capacity of the EUREKA. Of particular significance are the Commercial Inspection report by Heger Dry Dock, Inc. dated January 2017 and the assessment for tandem barge lifting also by Heger Dry dock dated January 19, 2017. Both reports find the dry dock unusable in its current condition.

These documents provide a detailed discussion of corrosion, especially in the pontoon top deck plate and its significance in reducing operational capability of the floating dry dock.

The vessel pontoon is built of transverse frames, typically spaced at 8 feet on center, which span across the 90 foot pontoon width. These transverse truss frames are supported by the docks wing walls. The pontoon deck plate and vessel bottom plate are integral parts of the transverse trusses. The top plate provides compression capacity for truss loading and functions as a significant part of the top chord of each frame.


At select locations, bulkhead frames are plated to form solid bulkhead separations which divide the vessel into chambers. There are two watertight bulkheads longitudinally offset from the vessel centreline about 8 feet. There are 5 transverse watertight bulkheads in the center section of the vessel. Some of the chambers created are now used as trim tanks which fill with water and are no longer water tight.

Plating on these bulkheads has an effect of stiffening the bulkhead however the maximum transverse bending capacity, and therefore lifting capacity of the vessel, are based on each typical transverse frame without bulkhead plating. This is because bulkheads, whether plated or not, do not share vessel keel loading. Each transverse frame must support its own share of load independently.

The top plate also resists hydrostatic loads when the dock is submerged and supports all other miscellaneous loads such as vehicles and personnel.

The deck plate is supported by stiffeners installed at approximately 24 inch on center. These stiffeners simultaneously support hydrostatic loads and other deck loads. For Dry Dock EUREKA, these stiffeners are oriented along the longitudinal axis of the vessel and therefore cannot provide additional compression capacity for transverse loading. Because of this, reduction in thickness of the deck plate has significant impacts to the compression capacity of the deck.

Pontoon decks that are stiffened longitudinally have steel plate panels oriented with their long axis parallel to the longitudinal axis of the dock and perpendicular to the line of transverse compressive stress in the plate when docking a vessel. This orientation results in a panel that will buckle under a much lower stress than that of a similarly sized panel orientated transversely to the dock's axis, depicted in Figure 11.

Figure 11: Pontoon Deck Framing-Transverse and Longitudinally Stiffened Panels

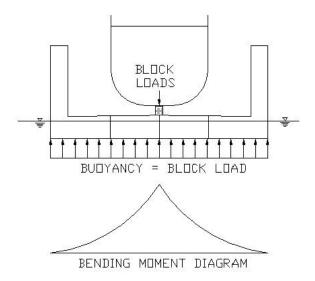
Several floating dry docks having longitudinally framed pontoon decks have buckled while the vessel was being lifted. This does not represent a problem if the dock is operated within its design limits, keeping the actual compressive stresses in the pontoon deck below the ultimate buckling stress of the panel. It can become a factor however once the design limits are exceeded or the deck plate experiences loss of metal thickness due to corrosion, since the factor of safety against buckling in a longitudinally framed plate is less than that for a similarly sized panel framed transversely.

The amount of corrosion loss varies significantly across EUREKA's pontoon deck. The most critical section for transverse loading is along the centerline of the vessel. Plate thickness loss ranges as

high as 57% in this area. There are also a very high number of fractured stiffeners which contribute to the unsafe condition of the vessel.

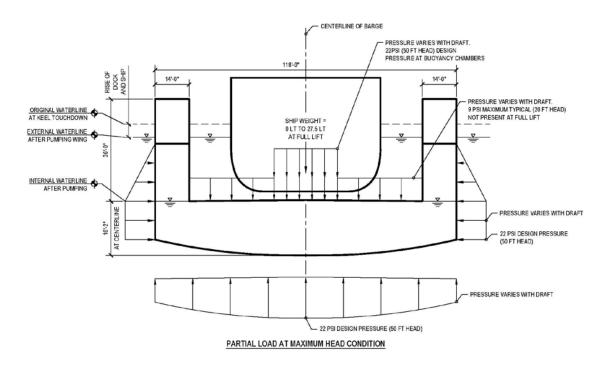
5.2 Structural Evaluation

GHD-TECI evaluated the dry dock structure for loading scenarios that would apply compressive stress to the pontoon deck.

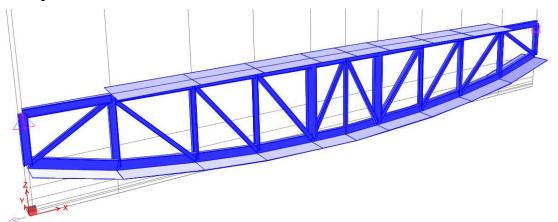

The transverse strength of the dry dock is provided by the transverse bulkheads (watertight and non-watertight) and/or transverse trusses in the pontoon.

The pontoon structure must distribute the concentrated load of the ship along the dock's centerline to the buoyant support of the water over its entire width by its transverse strength.

Maximum Transverse Bending


The maximum positive transverse bending moment occurs at the point when the exterior water is at the top of the keel blocks. At this time, there is 100% of the vessel weight on the floating dock while the pontoon and the submerged section of the wingwalls provide lift.

The submerged section of the wing provides additional buoyancy farther away from the dock centerline, which increases the bending moment. For this case 100% of the ship's weight is assumed to act on the keel blocks at the transverse centerline as shown on Figure 12 below. This puts the bottom (keel) plate in tension and the pontoon deck plate in compression.


Figure 12: Transverse Bending Moment Diagram

An additional scenario is a partial vessel load combined with maximum hydrostatic pressure as seen on Figure 13 below.

Figure 13: Partial Load with Max Hydrostatic head

GHD-TECI prepared a simplified analysis model using SAP2000 structural analysis software to evaluate transverse dock loading due to lifting keel-supported vessels where the entire load is assumed placed at the centerline of the dock as shown in Figure 14. GHD-TECI also verified calculation of plate thickness and stiffener strength to support the principal hydrostatic loading for a submerged dock.

Figure 14: SAP2000 Model - Pontoon Frame

A vessel keel loading of 27.5 LT per foot was placed on a single representative frame modelled in two dimensions as shown in Figure 15. A reduction of plate thickness of 43% was used in our analysis to compute compression and plate bending stresses. Since the original plate thickness was 0.4375" (7/16") we used a remaining thickness of 0.25" for our estimates of stress. This represents a reduction in steel area to resist compression of about 40% for the top chord of the frame.

Figure 15: SAP2000 Loading Diagram

This design loading, equal to the originally rated capacity of 14,500 LT causes an effective demand compression stress of about 7,000 psi in the remaining section of the corroded pontoon deck plate.

The original 7/16-inch plate normally has a compression capacity over 9,200 psi at its full thickness. Reduction in thickness drastically reduces compression capacity of the plate section to about 30 to 35% of its original value. For a net remaining section of 0.25 inch for the pontoon top deck, GHD-TECI computed an average available stress capacity of 3,000 psi. It can easily be determined that this is an unacceptable loading.

The stress ratio of demand/resistance is 7000psi/3000psi=2.33. This ratio is limited to 1.0 or less therefor the plate will be considerably overstressed if loads are lifted in the pontoon deck's current condition.

We reduced the keel loading to a value of 13.5 LT per foot in order to evaluate the resultant compressive stress on the corroded deck plate. The resulting stress is less than 3000psi which would indicate that the pontoon may be capable in its current condition of lifting reduced loads.

Hydrostatic Pressure and Deck Plate Bending

The capacity of the plate deck to resist submerged hydrostatic pressures remains the limiting factor preventing use for even small lifted vessels. Plate loading used in the analysis is shown in Figure 13. GHD-TECI analysis indicates that areas where 0.25 inch plate remains can support approximately 12.5 feet of head pressure while submerged. Some areas of the deck are as thin as 0.2 inches or less which can support less than 8 feet of water pressure Typical evaluation of plate for head pressure loading is done by checking plate bending stresses using a standard formula for a beam element spanning between supports. In this case, stiffeners are typically spaced at 24.6" on center. A closer spacing is used near the vessel centerline where plate was designed to support head pressure over buoyancy chambers.

The calculation for maximum allowable head pressure given reduced plate thickness is as shown below.

$$M_{capacity} = 27000psi x \left(\frac{1"(0.25")}{6}\right) = 281 in - lbs$$

Pressure Allowable = $\frac{12(281in - lbs)}{(24.6)^2} = 5.5psi$
Equivalent Head = $\frac{5.5psi(144sqin)}{64pcf} = 12.5 ft$ head

Where stiffeners are fractured, the available capacity to support hydrostatic loads is not able to be calculated due to the broken element. The capacity is almost zero in this case. Only redundancy in the deck with the ability of plate to span in multiple directions has allowed continued functionality to this point in time.

5.3 Current Vessel Lifting Capacity

The structural evaluations above indicate that Dry Dock EUREKA has very little capacity in its current condition. While it has some transverse lifting capacity based on pontoon deck plate compressive stresses, it has little to no capacity to safely submerge and resist hydrostatic pressures on the pontoon deck plate. Further, areas of reduced deck plate strength and fractured stiffeners are unsafe for operational loading such as personnel and vehicles.

GHD-TECI is in agreement with recent opinions by Heger Dry Dock that the dock is currently unsafe for use.

With limited repairs to the deck, that may allow safe vertical deck loading and hydrostatic pressures, some lifting may be accomplished even without repair of the deck plate. If all of the damaged deck stiffeners are repaired, GHD-TECI estimates that the dock could possibly be rated to lift approximately 7,000 long tons with a limit of about 13.5 LT per foot of keel block loading.

6. Corrosion Assessment

6.1 Testing Methodology

The assessment of the pontoon interior compartments included a visual and nondestructive evaluation using ultrasonic thickness measurements of localized wall thickness, corrosive pitting examination, and visual assessment of corrosion-related damage to the steel wall surfaces. The ballast and void tank compartments of the pontoon were reviewed. Steel surfaces were cleaned and prepared for assessment using a wire brush with a scraping tool to remove residual contaminants and corrosion product, where applicable.

Wall thickness measurements were obtained using an Olympus 38 DL Plus Ultrasonic Thickness Gage Dual Transducer (THRU-COAT Transducer # D7906-SM) and glycerin couplant. Eight (8) thickness measurements were recorded at each of the locations measured which was used to determine average wall thickness at each location tested. Figure 16 depicts typical process to take UT measurement of wall thickness. Selected beam web thicknesses were measured using a General UltraTECH digital micrometer. The webs were cleaned and prepared for assessment using a wire brush with a scraping tool to remove residual contaminants and corrosion product, where applicable.

Figure 16: Process for Typical UT Measurement

6.2 Tank 5A

The Tank 5A North Wall average wall thickness is reported as 0.512 inches. The remaining three (3) interior walls average thickness is approximately 0.40 inches. Coating assessed at selected locations appeared intact with negligible defects, loss of adherence, or other visible losses in integrity. Coating thickness of up to 20 mils was measured. See Table 5 and Table 6 for summary.

Location	Coating Thickness (mils)	Nominal Wall Thickness (inches)	Average (inches)	Minimum (inches)	Maximum (inches)
	-	0.528		0.478	0.540
	-	0.492			
North Wall	6	0.504			
112" from E.	-	0.503	0.512		
Wall	5	0.530	0.512		
58" Height	5	0.540			
	8	0.478			
	9	0.524			
	-	0.407		0.380	0.408
	8	0.394			
East Wall	-	0.408			
38" from N. Wall	9	0.393	0.394		
55" Height	8	0.388			
0	13	0.380			
	8	0.395			

Table 5: Tank 5A UT Summary

	8	0.389			
	17	0.418			
	11	0.414			
South Wall	18	0.415			
112" from E.	19	0.411	0.418	0.411	0.430
Wall	10	0.430	0.410	0.411	0.430
58" Height	14	0.416			
	18	0.420			
	16	0.416			
	16	0.401		0.381	0.407
	17	0.386			
West Wall	7	0.405			
105" from N.	5	0.407	0.395		
Wall	20	0.381	0.395	0.301	0.407
72" Height	6	0.403			
	10	0.382			
	15	0.395			
	Overall Average		0.430	0.413	0.446

Table 6: Tank 5A Measured Thicknesses

Member	Thickness (in)
Diagonal	0.57
Post	0.64
Bottom Chord	0.51

6.3 Tank 5

The Tank 5 average wall thickness is reported as approximately 0.39 inches. Coating assessed at selected locations appeared intact with negligible defects, loss of adherence, or other visible losses in integrity. Coating thickness of up to 27 mils was measured. Figure 17 depicts indications of corrosion and coating failure on the tank ceiling and the diagonal, post and lower chord members. See Table 7 and Table 8 for summary.

Table 7: Tank 5 UT Summary

Location	Coating Thickness (mils)	Nominal Wall Thickness (inches)	Average (inches)	Minimum (inches)	Maximum (inches)
	8	0.422	0.419		
	8	0.408			
North Wall	13	0.406		0.406 0.4	
38" from E.	-	0.422			0.425
Wall	17	0.424			0.425
63" Height	-	0.420			
	-	0.425			
	9	0.423			
East Wall	15	0.396	0.402	0.396	0.407
99" from S.	12	0.407	0.402	0.390	0.407

Mall	19	0.406			
Wall 94" Height		0.406			
94 Height	11	0.396			
	11	0.399			
	14	0.404			
	12	0.406			
	12	0.403			
	16	0.354			
	14	0.373			
South Wall	10	0.387		0.354	0.387
72" from S.	17	0.360	0.368		
Wall	22	0.369			
120" Height	20	0.364			
	16	0.370			
	13	0.366			
	27	0.398			
	22	0.365			0.000
West Wall	18	0.394			
79" from N.	18	0.380	0.290	0.365	
Wall	14	0.397	0.389	0.365	0.398
120" Height	16	0.389			
	17	0.394			
	16	0.394			
	Overall Average		0.394	0.380	0.404

Table 8: Tank 5 Measured Thicknesses

Member	Thickness (in)
Diagonal	0.67
Post	0.69
Bottom Chord	0.52

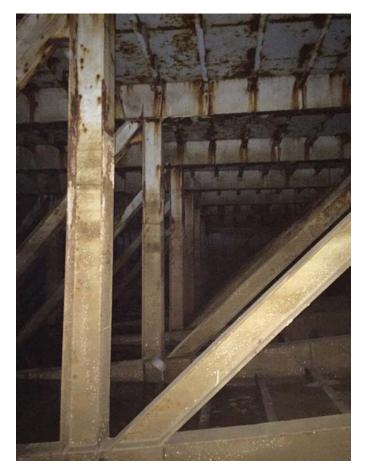


Figure 17: Tank 5 Corroded Members

6.4 Tank 6A

The Tank 6A North Wall average wall thickness is reported as 0.472 inches. The Tank 6A Wing Wall Interior average wall thickness is reported as 0.438 inches. The remaining three (3) interior walls average thickness is approximately 0.38 inches. Coating assessed at selected locations appeared intact with negligible defects, loss of adherence, or other visible losses in integrity. Coating thickness of up to 19 mils was measured. Figure 18 depicts indications of corrosion and coating failure on the tank ceiling and the diagonal, post and lower chord members. See Table 9 and Table 10 for summary.

Location	Coating Thickness (mils)	Nominal Wall Thickness (inches)	Average (inches)	Minimum (inches)	Maximum (inches)
	-	0.378	0.359		
	9	0.336		0.336 0	0.386
North Wall	6	0.346			
38" from W.	-	0.386			
Wall	-	0.363			
67" Height	14	0.338			
	12	0.355			
	12	0.368			

Table 9: Tank 6A UT Summary

	47	0.000			
	17	0.368			
	8	0.389			
East Wall	8	0.395	0.000		
40' from S.	14	0.392		0.269	0.403
Wall	15	0.382	0.388	0.368	0.403
66" Height	13	0.403			
	-	0.391			
	-	0.383			
	-	-			
	-	-	-		
South Wall	-	-			-
	-	-			
Inaccessible	-	-			
	-	-			
	-	-			
	-	-			
	6	0.385			
	5	0.382			
West Wall	22	0.362			
40' from S.	20	0.375	0.379	0.362	0.398
Wall	6	0.375	0.379	0.302	0.550
51" Height	8	0.398			
	-	0.387			
	14	0.370			
	Overall Average		0.375	0.355	0.396

Table 10: Tank 6A Measured Thicknesses

Member	Thickness (in)
Diagonal	0.58
Post	0.63
Bottom Chord	0.53

Figure 18: Typical Corrosion at Roof of Tank 6A

6.5 Tank 6

The Tank 6 average wall thickness is reported as approximately 0.38 inches. Coating assessed at selected locations appeared intact with negligible defects, loss of adherence, or other visible losses in integrity. Coating thickness of up to 22 mils was measured. See Table 11 and Table 12 for summary.

Location	Coating Thickness (mils)	Nominal Wall Thickness (inches)	Average (inches)	Minimum (inches)	Maximum (inches)
	-	0.378	0.359		
	9	0.336			
North Wall	6	0.346			0.386
38" from W.	-	0.386		0.336 0	
Wall	-	0.363			0.380
67" Height	14	0.338			
	12	0.355			
	12	0.368			
East Wall	17	0.368			
40' from S.	8	0.389	0.388	0.368	0.403
Wall	8	0.395			

Table 11: Tank 6 UT Summary

66" Height	14	0.392			
	15	0.382			
	13	0.403			
	-	0.391			
	-	0.383			
	-	-			
	-	-			
South Wall	-	-			
Inaccessible	-	-	_	-	_
maddeddibie	-	-			
	-	-			
	-	-			
	-	-			
	6	0.385			
	5	0.382			
West Wall	22	0.362			
40' from S.	20	0.375	0.379	0.362	0.398
Wall	6	0.375	0.579	0.302	0.590
51" Height	8	0.398			
	-	0.387			
	14	0.370			
	Overall Average		0.375	0.355	0.396

Table 12: Tank 6A Measured Thicknesses

Member	Thickness (in)
Diagonal	0.58
Post	0.63
Bottom Chord	0.53

6.6 Tank 7

The Tank 7 average wall thickness is reported as approximately 0.38 inches. Coating assessed at selected locations appeared intact with negligible defects, loss of adherence, or other visible losses in integrity. Coating thickness of up to 16 mils was measured. See Table 13 and Table 14 for summary.

Table 13: Tank 7 UT Summary

Location	Coating Thickness (mils)	Nominal Wall Thickness (inches)	Average (inches)	Minimum (inches)	Maximum (inches)
	-	0.401	0.401	0.400	0.403
North Wall	-	0.402			
83" from E.	-	0.400			
Wall	11	0.400			
61" Height	-	0.403			
	-	0.400			

	-	0.401			
	6	0.402			
	-	0.365			
	-	0.368			
East Wall	13	0.344	0.000		
64" from S.	-	0.363		0.340	0.369
Wall	13	0.340	0.360	0.340	0.369
84" Height	-	0.361			
	-	0.369			
	-	0.367			
	16	0.365			
	10	0.379	0.380	0.365	0.389
South Wall	11	0.385			
50" from E.	12	0.373			
Wall	12	0.374			
54" Height	7	0.389			
	6	0.388			
	-	0.385			
	8	0.396			
	-	0.396			
West Wall	-	0.395			
68" from S.	6	0.396	0.394	0.383	0.397
Wall 112" Height	10	0.383	0.394	0.505	0.397
	-	0.397			
	7	0.394			
	13	0.393			
	Overall Average		0.384	0.372	0.390

Table 14: Tank 7 Measured Thicknesses

Member	Thickness (in)
Diagonal	0.67
Post	0.52
Bottom Chord	0.41

6.7 Tank 8

The Tank 8 average wall thickness is reported as approximately 0.39 inches. Coating assessed at selected locations appeared intact with negligible defects, loss of adherence, or other visible losses in integrity. Coating thickness of up to 18 mils was measured. See Table 15 and Table 16 for summary.

Location	Coating Thickness (mils)	Nominal Wall Thickness (inches)	Average (inches)	Minimum (inches)	Maximum (inches)
North Wall	18	0.388	0.387	0.380	0.398
60" from W.	9	0.386	0.307	0.300	0.390

Table 15: Tank 8 UT Summary

Wall	11	0.388			
55" Height	11	0.386			
	6	0.398			
	10	0.380			
	8	0.386			
	8	0.386			
	0	0.405			
	8	0.395			
East Wall	0	0.413			
69" from S.	0	0.413	0.405	0.388	0.413
Wall	0	0.411	0.405	0.300	0.413
79" Height	13	0.388			
	8	0.404			
	8	0.407			
	13	0.390			
	7	0.404		0.385 0.4	0.404
South Wall	5	0.401			
51" from W.	-	0.399	0.393		
Wall	12	0.385	0.393		0.404
56" Height	14	0.388			
	11	0.390			
	10	0.385			
	18	0.388			
	9	0.386			
West Wall	11	0.386	0.387		
34" from S.	11	0.386		0.380	0.398
Wall	6	0.398		0.000	0.030
55" Height	10	0.380			
	8	0.386			
	8	0.386			
	Overall Average		0.393	0.383	0.403

Table 16: Tank 8 Measured Thicknesses

Member	Thickness (in)
Diagonal	0.65
Post	0.52
Bottom Chord	0.52

6.8 Tank 9

The Tank 9 average wall thickness is reported as approximately 0.40 inches. Coating assessed at selected locations appeared intact with negligible defects, loss of adherence, or other visible losses in integrity. Coating thickness of up to 18 mils was measured. Figure 19 depicts galvanic anodes directly affixed to the tank wall. See Table 17 and Table 18 for summary.

Location	Coating Thickness (mils)	Nominal Wall Thickness (inches)	Average (inches)	Minimum (inches)	Maximum (inches)
	11	0.370			
	-	0.386			
North Wall	-	0.381	0.379		
40" from E.	10	0.368		0.368	0.390
Wall	vvali - 0.384	0.300	0.390		
39" Height	-	0.380			
	-	0.390			
	10	0.369			
	14	0.388			
	15	0.387			
East Wall	13	0.387			0.389
123" from N.	14	0.387	0.000	0.007	
Wall	14	0.389	0.388	0.387	
54" Height	13	0.388			
	14	0.388			
	12	0.388			
	13	0.408			
	11	0.409			
South Wall	12	0.403			
107" from W.	6	0.418	0.407	0.000	0.440
Wall	12	0.409	0.407	0.390	0.419
58" Height	11	0.403			
	-	0.419			
	18	0.390			
	-	0.408			
	-	0.419	0.411 0.404		
West Wall	-	0.404			
48" from N.	-	0.410		0.404	0.440
Wall	8	0.405		0.404	0.419
61" Height	-	0.409			
	-	0.412			
	-	0.419			
	Overall Average		0.396	0.387	0.404

Table 17: Tank 9 UT Summary

Table 18: Tank 9 Measured Thicknesses

Member	Thickness (in)
Diagonal	0.73
Post	0.63
Bottom Chord	0.53

Figure 19: Tank 9 Wall

6.9 Tank 10

The Tank 10 average wall thickness is reported as approximately 0.38 inches. Coating assessed at selected locations appeared intact with negligible defects, loss of adherence, or other visible losses in integrity. Coating thickness of up to 20 mils was measured. See Table 19 and Table 20 for summary.

Location	Coating Thickness (mils)	Nominal Wall Thickness (inches)	Average (inches)	Minimum (inches)	Maximum (inches)
	10	0.371			0.387
	9	0.372			
North Wall	10	0.372			
59" from W.	7	0.385	0.380	0.371	
Wall	11	0.387	0.380	0.371	
59" Height	8	0.385			
	8	0.385			
	7	0.386			
	15	0.376			
	16	0.379			
East Wall	-	0.391	0.379		
42" from S. Wall	20	0.377 0.379 0 0.366		0.366	0.391
42" Height	15				
5	5	0.389			
	12	0.377			

Table 19: Tank 10 UT Summary

	12	0.378			
	9	0.383			
	12	0.383			
South Wall	14	0.382			
90" from W.	-	0.397	0.388	0.382	0.397
Wall	-	0.394	0.300	0.362	0.397
62" Height	12	0.383			
	13	0.387			
	-	0.397			
	7	0.358			
	12	0.357			
West Wall	8	0.344			
60" from N.	5	0.340	0.356	0.340	0.379
Wall	-	0.379	0.000	0.340 (0.379
61" Height	8	0.343			
	-	0.358			
	-	0.367			
	Overall Average		0.376	0.365	0.389

Table 20: Tank 10 Measured Thicknesses

Member	Thickness (in)
Diagonal	0.67
Post	0.61
Bottom Chord	0.45

6.10 Tank 20A

The Tank 20A North Wall average wall thickness is reported as 0.502 inches. The remaining three (3) interior walls average thickness is approximately 0.39 inches. Coating assessed at selected locations exhibit moderate defects including failure and other visible losses in integrity. Coating thickness of up to 17 mils was measured. Figure 20 depicts indications of corrosion and coating failure on the tank wall, diagonals, and vertical posts. See Table 21 and Table 22 for summary.

Table 21: Tank 20A UT Summary

Location	Coating Thickness (mils)	Nominal Wall Thickness (inches)	Average (inches)	Minimum (inches)	Maximum (inches)
	13	0.491			
	11	0.491			
North Wall	11	0.495			
87" from W.	9	0.505	0.502	0.491	0.517
Wall	10	0.497	0.302	0.431	0.317
75" Height	-	0.513			
	10	0.510			
	-	0.517			
East Wall	10	0.396	0.402	0.385	0.416

7411 (40	0.000			
74" from S.	10	0.393			
Wall 57" Height	10	0.415			
57 Height	-	0.415			
	9	0.416			
	10	0.385			
	11	0.398			
	10	0.395			
	5	0.387			
	13	0.370			
South Wall	-	0.391	0.385	0.370	0.392
91" from W.	-	0.388			
Wall	6	0.386			
84" Height	16	0.377			
	6	0.392			
	5	0.385			
	17	0.384			
	12	0.382			
West Wall	10	0.398			
72" from N.	9	0.394	0.389	0.382 0.39	0.209
Wall	9	0.394			0.396
43" Height	13	0.384			
	9	0.393			
	13	0.385			
	Overall Average		0.419	0.407	0.431

Table 22: Tank 20A Measured Thicknesses

Member	Thickness (in)
Diagonal	0.57
Post	0.53
Bottom Chord	-

Figure 20: Tank 20A Side Wall and Diagonal

6.11 Tank 22

The Tank 22 average wall thickness is reported as approximately 0.39 inches. Coating assessed at selected locations appeared intact with negligible defects, loss of adherence, or other visible losses in integrity. Coating thickness of up to 14 mils was measured. See Table 23 and Table 24 for summary.

Location	Coating Thickness (mils)	Nominal Wall Thickness (inches)	Average (inches)	Minimum (inches)	Maximum (inches)
North Wall 25" from E. Wall 83" Height	11	0.378	0.359	0.336	0.386
	11	0.336			
	11	0.346			
	11	0.386			
	11	0.363			
	11	0.338			
	13	0.355			
	11	0.368			
East Wall 73" from S. Wall 84" Height	8	0.386	0.377	0.372	0.386
	13	0.373			
	13	0.372			
	12	0.373			
	9	0.386			
	13	0.373			

Table 23: Tank 22 UT Summary

	12	0.372			
	14	0.382			
	-	0.405			
	8	0.402			
South Wall	11	0.385			
28" from W.	-	0.407	0.398	0.385	0.407
Wall	-	0.404	0.390	0.365	0.407
81" Height	-	0.407			
	13	0.385			
	11	0.386			
	8	0.409			
	5	0.421			
West Wall	9	0.425			
74" from N.	0	0.420	0.413	0.408	0.425
Wall	8	0.408	0.413	0.400	0.423
59" Height	8	0.408			
	7	0.408			
	7	0.408			
	Overall Average		0.387	0.375	0.401

Table 24: Tank 22 Measured Thicknesses

Member	Thickness (in)
Diagonal	0.68
Post	0.61
Bottom Chord	-

6.12 Tank 23

The Tank 23 South Wall average wall thickness is reported as 0.446 inches. The remaining three (3) interior walls average thickness is approximately 0.37 inches. Coating assessed at selected locations appeared intact with negligible defects, loss of adherence, or other visible losses in integrity. Coating thickness of up to 19 mils was measured. See Table 25 and Table 26 for summary.

Table 25: Tank 23 UT Summary

Location	Coating Thickness (mils)	Nominal Wall Thickness (inches)	Average (inches)	Minimum (inches)	Maximum (inches)
	8	0.377			
	-	0.391			
North Wall	12	0.377			
73" from E.	14	0.382	0.384	0.377	0.391
Wall	4	-	0.304	0.577	0.591
64" Height	-	0.391			
	11	0.379			
	-	0.391			
East Wall	5	0.397	0.391	0.376	0.400

GHD-Telamon Engineering Consultants, Inc | Port of San Francisco – Dry Dock EUREKA Structural Assessment Report |

35" from S.	10	0.395			
Wall	10				
46" Height	-	0.400			
ie iegu	7	0.392			
	10	0.376			
	-	0.394			
	-	0.388			
	-	0.387			
	18	0.438			
	12	0.468			
South Wall	18	0.430			
72" from W.	17	0.428	0.440	0.400	0.400
Wall	10	0.469	0.446	0.428	0.469
62" Height	17	0.443			
	18	0.449			
	18	0.443			
	18	0.327			
	19	0.320			
West Wall	17	0.327			
38" from S.	17	0.320	0.324	0.320	0.328
Wall	17	0.326	0.324	0.320	0.320
62" Height	17	0.324			
	16	0.328			
	17	0.320			
	Overall Average		0.386	0.375	0.397

Table 26: Tank 23 Measured Thicknesses

Member	Thickness (in)
Diagonal	0.69
Post	0.56
Bottom Chord	0.70

7. Conceptual Repairs

GHD-TECI reviewed several alternative short and long term repair strategies for Dry Dock Eureka. The short term and long term repair options found to be most cost-effective and requiring the least amount of down-time for the dry dock are presented below. Repair concepts are shown on drawings in Appendix B.

7.1 Short-Term Repair Strategies

Primary short term repair strategies include repairing or replacing fractured stiffeners and patching the thinnest areas of the pontoon deck plate in order to allow partial submergence of the dry dock. This solution will also allow safe traffic and personnel use of the deck. With properly completed short term repairs, the dock could possibly be used for lifting in the 7,000 long ton range as discussed in Section 5.3.

All fractured stiffeners should be repaired by removing the fractured area and splicing in an angle repair piece. Each new segment of angle will be welded in place to patch the cut stiffener. In some locations, where there are multiple fractures in a single stiffener, it may be more efficient to replace the whole stiffener of add a supplemental stiffener alongside the existing one. Replacement and repair of stiffeners will provide significant new strength for resisting hydrostatic loading during submerging. At this point, the thinnest areas of deck plate that pose a problem with hydrostatic load or point loads such as equipment wheel loads need to be addressed with repairs.

- Areas with less than 25% loss of steel thickness (0.33 inch remaining) do not need to be repaired as part of a short term strategy. Areas of deck plate with more steel loss than 25% will need to be patch or overlaid with supplemental plate in order to allow full submergence of the vessel.
- Areas with less than 43% loss of steel thickness (0.25 inch remaining) may not need to be repaired if operations are limited to approximately 12.5 feet of hydrostatic head over the submerged pontoon deck.
- Areas with more than 43% loss will need to be patched or overlaid in any case.

7.2 Long-Term Repair Strategies

Long term strategies are assumed to be those that would return the EUREKA to between 12,000 and 14,000 LT rated lifting capacity with an expected service life following completion of 20 to 25 years. Replacement of the pontoon deck will be required in this scenario. Deck plate will be removed in sections and replaced with new prefabricated units which include new deck plate and pre-welded stiffeners. This opportunity should be used to patch and repaint affected areas of the main frames where each panel will attach.

New panels can be fabricated in 8 feet wide sections to an easily manageable length in the opposite direction. The 8 foot width will match the frame spacing. We agree with the previous recommendation of using 1/2 inch deck plates with new continuous angle stiffeners pre-attached by fully welding each face and then painted. The center 1/4 section of dock should be repaired first in the case of a staged repair project. Remaining sections from the center outwards towards the wing walls should be repaired next. Deck plate matching the original thickness of 7/16 inch can be used in these areas. Welded joints should be stripe coated and painted to match the shop coat to complete coating of the entire replaced steel area. The top deck should be coated with a protective wearing surface to prevent future corrosion.

Long term repairs should also include repair and patching of upper deck plating and wing wall plating where section loss has occurred.

Cleaning and recoating of the entire vessel is recommended to prevent future section loss in other areas and prolong the life of the vessel.

GHD-TCI also recommends the installation of new cathodic protection as discussed in Section 8.1.

8. Corrosion Protection

8.1 Anodes

The dry dock structure requires anode replacement for the permanently submerged surfaces. Cathodic protection design should be conducted by a NACE Cathodic Protection Specialist which involves modelling the DC current requirement and DC current distribution. The sizing, quantity, and location of galvanic anodes should be based on achieving cathodic protection per NACE criteria at all continuously wetted surfaces and a 20-year minimum anode service life. Reuse of existing studs and should be maximized as a part of the cathodic protection design where possible. Anodes which will not be replaced should be abandoned in place if greater than 50% of the original anode cross section remains or if the anode cannot be removed due to fouling of the mechanical connection. New or replacement anodes should be installed by bolting anode core straps to the pre-existing threaded bolts or by spot welding new threaded bolts followed by mechanical anode connection.

Following installation of replacement and/or supplemental galvanic anodes, a cathodic protection survey should be conducted under the direct supervision of a NACE Cathodic Protection Specialist to assess whether cathodic protection per NACE criteria has been achieved. The survey should include, at a minimum, measurement of structure-to-water potential versus a stable reference electrode at various locations at the midpoint between anodes on the hull exterior and at midpoints between anodes within each tank.

8.2 Coating

The replacement pontoon deck plate and stiffeners will have a primer coat applied over the prepared steel surface using a reinforced inorganic zinc silicate or zinc-rich, aromatic urethane. An intermediate coat is then applied using polyamidoamine epoxy or cycloaliphatic amine epoxy. A finish coat is applied using a heavy duty epoxy anti-slip coating, applied to a DFT of 6 to 8 mils in a single coat.

For the long term repairs, all sections of the interior compartments will have the same coating system applied after the existing rust scale and loose paint has been removed using an abrasive method.

9. Cost Estimate for Repair Concepts

The cost estimates developed for the short term and long tern repair scenarios assume that all work will be self-performed by the shipyard's labor force. The short term repair scenario described in Section 7 is estimated to cost approximately \$1,800,000.

The long term repair scenario including a complete replacement of the pontoon deck and recoating of the dock interior areas is estimated to be approximately \$6,500,000.

Preliminary cost estimates for the repair concepts were developed by GHD-TECI's subconsultant, M. Lee Corporation and the report is included in Appendix A.

10. Conclusions and Recommendations

It is GHD-TECI's opinion that Dry Dock EUREKA is currently unsafe for vessel lifting operations. The two main issues regarding the dry dock EUREKA are reduced thickness of the pontoon deck plate due to corrosion and fracture and corrosion of the supporting stiffeners.

The pontoon deck is a key structural component with regard to the structural integrity of the dock. As discussed in this report, a significant number of UT thickness readings show current steel thickness at 25%-50% of the original due to corrosion. The corroded deck plate in its current condition has drastically reduced the transverse strength of the dock.

The extensively corroded deck plating is also coupled with widespread fractures and damage in the longitudinal serrated stiffeners. These fractures are due to the original design of the longitudinal stiffeners. The serrations lead to areas of high stress concentration and many years of cyclical loading and unabated corrosion have caused widespread structural failure of these members. These stiffeners are responsible for resisting transverse bending loads, local head pressure loading, and vehicle and equipment loading on the deck. When compromised, these members significantly decrease the overall structural capacity of the dock.

Other structural dock components were inspected including internal frame members and interior bulkheads. Thickness readings show relatively small amounts of steel section loss in specific areas. Provided that these locations are cleaned, prepared and recoated with the long term repairs, extended service life for the dock can be expected provided the recommended structural repairs are made. It is also recommended that the dock wingwalls and upper deck areas be inspected for deterioration prior to undertaking the long term repairs.

The recommended long term solution for the pontoon deck structural issues is a complete deck replacement, to replace thinned deck plate and to replace the notched stiffeners with a more robust design. Smaller local repairs can be performed in the shorter term to marginally increase the docks structural capacity and allow the dock to go back into service. If sections of pontoon deck stiffeners, or even all of the pontoon deck stiffeners, are replaced, there will still be limited transverse strength and head pressure capacities due to the pontoon deck plate thickness. Therefore, the short term repair plan is considered a temporary solution to the observed fractured stiffeners and not a viable long term solution, due to the excessively corroded pontoon deck plate.

GHD-TECI recommends that the entire pontoon deck be replaced to enable the dock to achieve an approximate 14,000 LT vessel lift capacity as originally rated. Stiffener replacement must also be completed with the longer term plan in accordance with recommended deck plate replacement. The pontoon deck can be replaced in sections using pre-fabricated stiffened panels.

Future certification at a specified vessel tonnage capacity and allowable head pressure will be based on performance of a design and implementation plan to repair or replace sections of the pontoon deck. On-site inspection of the repairs and a successful submergence of the dock will be required for re-certification.

GHD-TECI also recommends that sacrificial anodes be replaced throughout the hull exterior and dock internal compartments. As section loss of hull plating was indicated via UT gauge readings and as there was little or no outward evidence of underwater hull plate corrosion, it is recommended that the interior of the hull plating be cleaned and recoated.

Appendix A

Preliminary Estimate of Probable Repair Costs Report

PORT OF SAN FRANCISCO DRY DOCK EUREKA REPAIR

PRELIMINARY ESTIMATE OF PROBABLE REPAIR COSTS BASED ON DRAFT STRUCTURAL ASSESSMENT REPORT

Owner: PORT OF SAN FRANCISCO

Prepared for **GHD**

655 Montgomery Street, Suite 1010 San Francisco, CA 94111 Contact: Craig Lewis, SE, Sr Project Manager (415) 296-3605 Email: Craig. Lewis@ghd.com

Prepared by M LEE CORPORATION

Construction Management & Consulting Cost Estimating and Project Scheduling 311 California Street, Suite 610 San Francisco, CA 94104 Contact: Franklin Lee, PE, LEED AP, CEP Certified Estimating Professional (415) 693-0236 Email: flee@mleecorp.com

Date: 6/2/2017R1

1255 Dry Dock Eureka Repair Estimate 20170602R1

PORT OF SAN FRANCISCO DRY DOCK EUREKA REPAIR

PRELIMINARY ESTIMATE OF PROBABLE REPAIR COSTS BASED ON DRAFT STRUCTURAL ASSESSMENT REPORT

Table of Contents:	<u>Page Nos.</u>
1) Basis of Estimate	3-6
2) Estimate Summary	7
3) Estimate Details - Short Term Repairs	8-9
4) Estimate Details - Long Term Repairs	10-12
5) Queries & Responses	13
Date: 6/2/2017R1	1255 Dry Dock Eureka Repair Estimate 20170602R1

Date: 6/2/2017R1

1 Purpose of the Estimate

This estimate has been prepared for the purpose of establishing a preliminary estimate of probable cost of construction based on the Draft Structural Assessment Report by GHD/Telamon JV, dated April 2017.

2 Content of the Estimate

This construction cost estimate, which represents our opinion of probable construction cost, consists of the following integral sections:

a Preamble (Basis of Estimate)

- b Estimate Summary
- c Estimate Details

Basis of Estimate

- 2 The scope of estimate is based on the following:
 - a Dry Dock Eureka Draft Structural Assessment Report, prepared by GHD/Telamon JV, dated April 2017, a total of 127 pages
 - b Drawings/Plans (part of above Structural Assessment Report) Appendix A Existing Drawings, prepared by GHD/Telamon JV dated 3/28/2017, a total of 3 sheets including the following: SK1.0, SK1.3, SK1.4 Appendix B Repair Concept Drawings, prepared by GHD/Telamon JV dated 3/28/2017, a total of 5 sheets including the following: SK2.1, SK2.2, SK2.3, SK2.4, SK3.0
 - c Assumptions for Short Term and Long Term repairs per GHD email on 4/27/2017.
 - d Responses to queries, attached, which take precedence over the April 2017 Report.
 - e Verbal clarifications with designers.
 - f Interior compartment coating quantities provided by GHD on 5/24/2017
 - g Incorporation of comments from design team and Port of San Francisco on the draft estimate.
 - h Revised quantities per comments received from GHD and Port of San Francisco on estimate dated 5/25/2017.

4 Scope of Estimate

The estimate includes the following general scope of work:

a **Short Term Repairs** to restore the dry dock to 7,000 long ton lifting capacity. Repair scope includes:

1) Repair or replace cracked stiffeners by removing fractured area and splicing in an angle repair piece. Where multiple fractures exist in a single stiffener, the entire stiffener maybe supplemented by adding a supplemental stiffener alongside the existing one.

- 2) Install doubler plate over thinnest areas of pontoon deck plate
- 3) Installcover plates over center of pontoon deck
- 4) Ladder rung replacement at top three runs at each tank
- 5) Cathodic protection
- b Long Term Repairs to restore the dry dock to 14,000 long ton lifting capacity. Repair scope includes:

1) Replacement of pontoon deck. Deck plate will be removed in sections and replaced with new prefabricated units, which include new deck plates and stiffeners.

2) Patch and repaint affected areas of the main frames where each panel will attach.

3) Coat top deck with protective wearing surface to prevent future corrosion.

- 4) Interior coating of compartments (floor, wall and ceiling) for 32 compartments.
- 5) Ladder rung replacement at top three runs at each tank
- 6) Cathodic protection

Date: 6/2/2017R1

5 Exclusions

The estimate specifically excludes the following items:

- a Legal fees and finance costs
- b Permit & plan check fees
- c Utility connection fees
- d Owner's administration costs
- e Design services
- f Other soft costs
- g Survey services, materials lab
- h Project/Construction management
- i Change orders during construction
- j Cost escalation beyond the date of this estimate

It is assumed that the above items, if needed, are included elsewhere in the owner's overall project budget.

6 Construction Schedule

All work to be performed during regular working hour. No overtime work allowed in the estimate. A rough construction duration has been derived from manpower hour estimates with assumed crews sizes and number of crews which gives 10 months for short term repairs and 25 months for long term repairs

Actual durations may vary depending on labor and crew availability and sequencing.

7 Procurement Method

The estimate reflects probable construction costs obtainable in the project locality on the date of this estimate assuming that work will be performed by shipyard's own labor forces.

8 Bid Conditions - N/A

9 Basis of Quantities

Wherever possible, this estimate has been based upon the actual measurement of different items of work. For the remaining items, parametric measurements were used in conjunction with references from other projects of a similar nature.

Quantities used in this estimate are based on query responses attached, which differ than the quantities shown on the drawings

10 Basis of Direct Cost Pricing

- a The unit prices used in the direct cost estimate section are composite unit prices which include costs for material, labor, equipment and subcontractor's/supplier's mark-ups.
- b Subcontractor's overhead and profit is included in each line item unit cost.
- c Labor costs are based on State of California prevailing wages for San Francisco.
- In pricing the estimate, we have made references to the following sources for cost data: Historical cost data of similar projects
 2017 RS Means Building Construction Cost Data by RS Means
 2017 RS Means Heavy Construction Cost Data by RS Means
 2017 National Construction Estimator by Craftsman
 Construction Economics in Engineering-News-Record (ENR)
 Walker's Building Estimator's Reference Book by Frank R. Walker Company

Date: 6/2/2017R1

Prevailing wage rates for constructions workers for City and County of San Francisco.

Based on the above cost sources, our analysis of the project specific requirements and our judgment of the current market conditions, we have determined the unit costs specifically for this project.

11 Markups

Markups are added to the direct estimated cost to cover the following markups based on a self-performed contract:

General Contractor's general conditions and general requirements General contractor's overhead and profit, bonds and insurance Design phase and estimating contingency

12 Cost Escalation

The estimate is based on current May 2017 dollars. No cost escalation is included. Based on current market conditions, we recommend an allowance for cost escalation at 6% per year for the next two years, compounded annually from today to the mid-point of construction.

13 Items Impacting Costs

The following is a list of some items that may affect the cost estimate:

- a Modifications to the scope of work or assumptions included in this estimate
- b Special phasing requirements
- c Restrictive technical specifications or excessive contract conditions
- d Any specified item of equipment, material, or product that cannot be obtained from at least three different sources
- e Any other non-competitive bid situations.

14 Limitations

- a Client acknowledges that our estimating service is consistent with and limited to the standard of care applicable to such services, which is that we provide our services consistent with the professional skill and care ordinarily provided by consultants practicing in the same or similar locality under the same or similar circumstances. The estimate is intended to be a determination of fair market value for the project construction. Since we have no control over market conditions, costs of labor, materials, equipment and other factors which may affect the bid prices, we cannot and do not warrant or guarantee that bids or ultimate construction costs will not vary from the cost estimate. We make no other warranties, either expressed or implied, and are not responsible for the interpretation by others of the contents herein the cost estimate.
- b It should be noted that the cost estimate is a "snapshot in time" and that the reliability of this opinion of probable construction cost will inherently degrade over time. The estimate should be updated as design progresses or when market condition has been changed.
- c Please note that the estimate has been prepared based on preliminary information and design assumptions which are subject to verifications and changes as the design progresses. An updated estimate should be prepared when more specific and detailed design information is available.

Date: 6/2/2017R1

15 Abbreviations used in the estimate:

CY = cubic yard EA= each GSF = gross square foot LB = pound LF = linear foot LOC=location LS = lump sum SF = square foot ROM = rough order of magnitude

Date: 6/2/2017R1

Port of San Francisco, Dry Dock Eureka Repairs Preliminary Estimate of Probable Repair Costs Based on Structural Assessment Report 2) Estimate Summary

c

Items	Short Term Repair Estimated Amount	Long Term Repair Estimated Amount
From attached details:		
Material Cost	\$556,240	\$3,525,688
Labor Cost	\$1,130,897	\$2,747,105
Equipment Cost	\$85,991	\$258,353
Estimated Total Construction Cost (Hard Cost)	\$1,773,128	\$6,531,146

ROM Estimated Construction Duration (Months), assuming a crew of 4 working sequentially

25

All in 2017 dollars, no cost escalation included above

Based on shipyard self-performing all work and based on labor rates provided by Shipyard on 4/25/2017 Please read the attached "Basis of Estimate" and 'Estimate Details" for assumptions, exclusions, qualifications and scope of work.

15

Port of San Francisco, Dry Dock Eureka Repairs Preliminary Estimate of Probable Repair Costs Based on Structural Assessment Report 3) Estimate Details - Short Term Repairs

	3) Estim	ate Details - Short Term Repairs											
LINE REF.	ITEM NO.	DESCRIPTION	QUANTITY	UNIT	MATER U.C.	RIAL \$ TOTAL	DURATION HRS	LABO U.C.	OR \$ TOTAL	EQUIP U.C.	MENT \$ TOTAL		TOTAL ESTIMATE \$
<u>KEF.</u> 1	A	Short Term Repairs		UNIT	0.0.	TOTAL	пко	0.0.	TOTAL	0.0.	TOTAL		ESTIMATE \$
2													
3		Repair of Stiffer at One Typical Location, work from inside compartment - overhead work											
4		Watchman for confined space work	1	Loc			2.00	157.00	157			157.00	157
5		Inspect for pin holes or corrosion exceeding limit	1	Loc			0.25	20.00	20	5.00	5	25.00	25
6		Localized abatement of LBP	1	EA	5.00	5	1.00	78.00	78	2.00	2	85.00	85
7		Cut & remove fractured corroded steel	1	EA			1.00	66.00	66	3.00	3	69.00	69
8		New L7x4x3/8 16" long welded to existing angle, about 18 lb/ea	1	EA	22.61	23	1.00	133.00	133	2.00	2	157.61	158
9		Coating at repair including wire brush, prime, intermediate and finish coats	1	EA	3.00	3	0.50	42.00	42			45.00	45
10													
11		Total per one typical location of stiffener repair	1	EA		31	5.75		496		12		539
12													
13		Total repair stiffeners at 866 locations	866	EA	31.00	26,846	208.79	496.00	429,536	12.00	10,392	539.00	466,774
14		Allow for skid as work platform inside compartment	244	Days						200.00	48,800	200.00	48,800
15		Add 1/2" doubler plate, about 20.16 lb/sf	7,000	SF	20.16	141,120	700.00	13.00	91,000			33.16	232,120
16		Coating at repair including wire brush, prime, intermediate and finish coats	7,000	SF	5.00	35,000	700.00	17.00	119,000			22.00	154,000
17		Add 1" cover plate, about 40.32 lb/sf	3,800	SF	40.32	153,216	190.00	7.00	26,600			47.32	179,816
18		Replace top 3 rungs of steel rungs at each tank	32	LOC	150.00	4,800	128.00	531.00	16,992			681.00	21,792
19		Cathodic Protection: 23 lb Zinc Anodes	325	EA	83.00	26,975	325.00	405.00	131,625	15.00	4,875	503.00	163,475
20		Cathodic Protection: 60 lb Magnesium Anodes	32	EA	200.00	6,400	128.00	1,724.00	55,168	65.00	2,080	1,989.00	63,648
21													
22													
23		Subtotal Direct Cost				394,357	2,380 I	Hours	869,921		66,147		1,330,425

Port of San Francisco, Dry Dock Eureka Repairs Preliminary Estimate of Probable Repair Costs Based on Structural Assessment Report 3) Estimate Details - Short Term Repairs

LINE	ITEM		QUANTITY			RIAL \$	DURATION	LAB	- •		MENT \$	TOTAL	TOTAL
REF.	NO.	DESCRIPTION		UNIT	U.C.	TOTAL	HRS	U.C.	TOTAL	U.C.	TOTAL	UNIT COST	ESTIMATE \$
24							15 (months for a	a crew of 4				
25		Sales Tax @ 8.50%				33,520							33,520
26													
27		Subtotal				427,877			869,921		66,147		1,363,945
28		Design Development And Estimating Contingency @ 30%				128,363			260,976		19,844		409,183
29													
30		Subtotal - Estimated Repair Costs Self-Perform by Shipyard Cre	ws			556,240			1,130,897		85,991		1,773,128
31		General Conditions/Requirements		N/A									
32													
33		Subtotal											
34		Bonds & Insurance @ 2%		N/A									
35													
36		Subtotal											
37		General Contractor's Overhead And Profit @ 10%		N/A									
38													
39		Total Estimated Repair Costs, Self-Performed				556,240			1,130,897		85,991		1,773,128

Port of San Francisco, Dry Dock Eureka Repairs Preliminary Estimate of Probable Repair Costs Based on Structural Assessment Report 4) Estimate Details - Long Term Repairs

L

LINE	ITEM		QUANTITY		MATE	RIAL \$	DURATION	LAB	OR \$	EQUIP	MENT \$	TOTAL	TOTAL
REF.	NO.	DESCRIPTION		UNIT	U.C.	TOTAL	HRS	U.C.	TOTAL	U.C.	TOTAL		ESTIMATE \$
1	в	Long Term Repairs											
2		Key Quantities											
3		Replace corroded deck plate and stiffeners with pre-fabricated deck plate with stiffeners	30,500	sf									
4		Assume each pre-fab unit is 8'Wx10'L	382	ea									
5		Use	400	ea									
6													
7		Estimate per pre-fab unit											
8		Watchman for confined space work	1	Loc			3.00	235.00	235			235.00	235
9		Localized abatement of LBP	1	EA	50.00	50	4.00	314.00	314	25.00	25	389.00	389
10		Cut & remove fractured corroded deck plate and stiffeners	1	EA			4.00	531.00	531	50.00	50	581.00	581
11		Pre-fabricated deck plate, 1/2" thick with L7x4x3/8 stiffener including shop coating, about 1,750 lb/ea, FOB jobsite	1	EA	3,500.00	3,500	1.00	235.00	235	100.00	100	3,835.00	3,835
12		Shop coating for pre-fabricated deck assembly	180	SF	2.50	450	1.80	2.00	360			4.50	810
13		Mobile crane	1	EA	42.00	42	2.00	127.00	127	42.97	43	211.97	212
14		Weld pre-fabricated section to existing stiffeners & deck	1	EA	72.00	72	4.00	531.00	531	220.00	220	823.00	823
15		Field coating of joints after completion of welding	1	EA	200.00	200	2.00	169.00	169			369.00	369
16													
17		Total per one typical location	1	EA		4,314	21.80		2,502		438		7,254
18													
19		Total repair deck assuming 400 units, 32,000 SF/ea	400	EA	4,314.00	1,725,600	258.46	2,502.00	1,000,800	438.00	175,200	7,254.00	2,901,600
20		Fixed platform, setup and demob - with Interior Compartment Co	ating Section	below									
21		Prepare top deck plating to receive new protective coating, excludes new deck plate	12,710	SF			54.00	1.40	17,794			1.40	17,794
22		Protective coating at new deck and existing deck	43,210	SF	0.50	21,605	162.00	1.30	56,173			1.80	77,778
23		Replace top 3 rungs of steel rungs at each tank	32	LOC	150.00	4,800	128.00	531.00	16,992			681.00	21,792
24		Cathodic Protection: 23 lb Zinc Anodes	325	EA	83.00	26,975	325.00	405.00	131,625	15.00	4,875	503.00	163,475

Date: 6/2/2017R1

Port of San Francisco, Dry Dock Eureka Repairs Preliminary Estimate of Probable Repair Costs Based on Structural Assessment Report 4) Estimate Details - Long Term Repairs

REF.NO.DESCRIPTIONUNITU.C.TOTALHRSU.C.TOTALU.C.TOTALU.T.UTALUNIT25Cathodic Protection: 60 lb Magnesium Anodes32EA200.006,400128.001,724.0055,16865.002,0801,724.0026Interior Compartment Coating at 32 locations totalInterior Compartment Coating at 32 locations total						MATE		DUDATION			501115		TOTAL	TOTAL
25 Cathodic Protection: 60 Ib Magnesium Anodes 32 EA 200.00 6.400 128.00 1.724.00 55,168 65.00 2.080 1; 26 27 Interior Compartment Coating at 32 locations total 28 Watchman for confined space work 32 Loc 960.00 2.352.00 75,264 2, 29 Fixed platform, setup and demob 45,120 SF 1.50 67,680 225.63 3.00 135,360 30 Prepare flooring to receive new coating 75,540 SF 223.75 1.50 113,310 0.10 7,554 32 Prepare celling to receive new coating 45,120 SF 223.75 1.50 113,310 0.10 7,554 33 Coating at Bor - primer, intermediate & finish 45,120 SF 3.90 175,968 238.88 1.80 81,216 34 Coating at walls - primer, intermediate & finish 75,540 SF 3.90 175,968 32.50 112,800 118,296 35 Coating at celling - primer, intermediate & finish 75,540 SF 3.90 175,968	LINE REF.	ITEM NO.		QUANTITY	UNIT			DURATION HRS					TOTAL UNIT COST	TOTAL ESTIMATE \$
27 Interior Compartment Coating at 32 locations total 28 Watchman for confined space work 32 Loc 960.00 2,352.00 75,264 2,2 29 Fixed platform, setup and demob 45,120 SF 1,50 67,680 225,63 3,00 135,360 4,512 S 30 Prepare flooring to receive new coating 45,120 SF - 325,75 1,50 113,310 0,10 4,512 31 Prepare celling to receive new coating 45,120 SF - 223,75 1,70 76,704 0,10 4,512 32 Coating at loor - primer, intermediate & finish 45,120 SF 3,90 175,968 236.88 1,800 81,216 - - - - - - - - 4,512 -		-		32		200.00		128.00			65.00	2,080	1,989.00	63,648
28 Watchman for confined space work 32 Loc 960.00 2,352.00 76,264 2, 29 Fixed platorm, satup and demob 45,120 SF 1.50 67,680 226.63 3.00 135,360 30 Prepare flooring to receive new coating 45,120 SF . 325,75 1.50 113,310 0.10 4,512 31 Prepare walls to receive new coating 75,540 SF . 223,75 1.70 76,704 0.10 4,512 33 Coating at floor - primer, intermediate & finish 45,120 SF . 223,75 1.70 76,704 0.10 4,512 34 Coating at floor - primer, intermediate & finish 45,120 SF 3.90 175,968 236.88 1.80 81,216 35 Coating at ceiling - primer, intermediate & finish 45,120 SF 3.90 175,968 331.63 2.50 112,800 198,733 36 Coating at ceiling - primer, intermediate & finish 45,120 SF 3.90 175,968 311.63 2.50 112,800 198,733 37	26													
29 Fixed platform, setup and demob 45,120 SF 1.50 67,680 225.63 3.00 135,360 30 Prepare flooring to receive new coating 75,540 SF 169.25 1.50 68,656 0.10 4,512 31 Prepare celling to receive new coating 75,540 SF 223.75 1.70 76,704 0.10 4,512 32 Prepare celling to receive new coating 45,120 SF 233.75 1.70 76,704 0.10 4,512 33 Coating at floor - primer, intermediate & finish 45,120 SF 3.90 175,968 236.88 1.80 812.16 34 Coating at walls - primer, intermediate & finish 45,120 SF 3.90 175,968 331.63 2.50 112,800 35 Coating at celling - primer, intermediate & finish 45,120 SF 3.90 175,968 331.63 2.50 112,800 36 Coating at celling - primer, intermediate & finish 45,120 SF 3.90 175,968 331.63 </td <td>27</td> <td></td> <td>Interior Compartment Coating at 32 locations total</td> <td></td>	27		Interior Compartment Coating at 32 locations total											
30 Prepare flooring to receive new coating 45,120 SF 169,25 1.30 58,656 0.10 4,512 31 Prepare walls to receive new coating 75,540 SF 325,75 1.50 113,310 0.10 7,554 32 Prepare ceiling to receive new coating 45,120 SF 223,75 1.70 76,704 0.10 4,512 33 Coating at floor - primer, intermediate & finish 45,120 SF 3.90 175,968 236,88 1.80 81,216	28		Watchman for confined space work	32	Loc			960.00	2,352.00	75,264			2,352.00	75,264
31 Prepare walls to receive new coating 75,540 SF 325,75 1.50 113,310 0.10 7,554 32 Prepare ceiling to receive new coating 45,120 SF 223,75 1.70 76,704 0.10 4,512 33 Coating at floor - primer, intermediate & finish 45,120 SF 3.90 175,968 236.88 1.80 81,216 4.512 34 Coating at walls - primer, intermediate & finish 75,540 SF 3.90 175,968 331.63 2.50 112,800	29		Fixed platform, setup and demob	45,120	SF	1.50	67,680	225.63	3.00	135,360			4.50	203,040
32 Prepare ceiling to receive new coating 45,120 SF 223,75 1.70 76,704 0.10 4,512 33 Coating at floor - primer, intermediate & finish 45,120 SF 3.90 175,968 236,88 1.80 81,216 34 Coating at ceiling - primer, intermediate & finish 75,540 SF 3.90 294,606 535,39 2.40 181,296 35 Coating at ceiling - primer, intermediate & finish 45,120 SF 3.90 175,968 331.63 2.50 112,800 36	30		Prepare flooring to receive new coating	45,120	SF			169.25	1.30	58,656	0.10	4,512	1.40	63,168
33 Coating at floor - primer, intermediate & finish 45,120 SF 3.90 175,968 236,88 1.80 81,216 34 Coating at walls - primer, intermediate & finish 75,540 SF 3.90 294,606 535.39 2.40 181,296 35 Coating at ceiling - primer, intermediate & finish 45,120 SF 3.90 175,968 331.63 2.50 112,800 36	31		Prepare walls to receive new coating	75,540	SF			325.75	1.50	113,310	0.10	7,554	1.60	120,864
34 Coating at walls - primer, intermediate & finish 75,540 SF 3.90 294,606 535.39 2.40 181,296 35 Coating at ceiling - primer, intermediate & finish 45,120 SF 3.90 175,968 331.63 2.50 112,800 36	32		Prepare ceiling to receive new coating	45,120	SF			223.75	1.70	76,704	0.10	4,512	1.80	81,216
35 Coating at ceiling - primer, intermediate & finish 45,120 SF 3.90 175,968 331.63 2.50 112,800 36	33		Coating at floor - primer, intermediate & finish	45,120	SF	3.90	175,968	236.88	1.80	81,216			5.70	257,184
36	34		Coating at walls - primer, intermediate & finish	75,540	SF	3.90	294,606	535.39	2.40	181,296			6.30	475,902
37 Subtotal Direct Cost 2,499,602 4064.00 Hours 2,113,158 198,733 38 25 months for a crew of 4 39 Sales Tax @ 8.50% 212,466	35		Coating at ceiling - primer, intermediate & finish	45,120	SF	3.90	175,968	331.63	2.50	112,800			6.40	288,768
38 25 months for a crew of 4 39 Sales Tax @ 8.50% 212,466 40	36													
39 Sales Tax @ 8.50% 212,466 40	37		Subtotal Direct Cost				2,499,602	4064.00	Hours	2,113,158		198,733		4,811,493
40	38							25	months for a	crew of 4				
41 Subtotal 2,712,068 2,113,158 198,733 42 Design Development And Estimating Contingency @ 30% 813,620 633,947 59,620 43	39		Sales Tax @ 8.50%				212,466							212,466
42 Design Development And Estimating Contingency @ 30% 813,620 633,947 59,620 43 44 Subtotal - Estimated Repair Costs Self-Perform by Shipyard Crews 3,525,688 2,747,105 258,353 45 General Conditions/Requirements N/A	40													
43	41		Subtotal				2,712,068			2,113,158		198,733		5,023,959
44Subtotal - Estimated Repair Costs Self-Perform by Shipyard Crews3,525,6882,747,105258,35345General Conditions/RequirementsN/A	42		Design Development And Estimating Contingency @ 30%				813,620			633,947		59,620		1,507,187
45 General Conditions/Requirements N/A	43													
	44		Subtotal - Estimated Repair Costs Self-Perform by Shipyard Crew	VS			3,525,688			2,747,105		258,353		6,531,146
46			General Conditions/Requirements		N/A									
	46													
47 Subtotal	47		Subtotal											

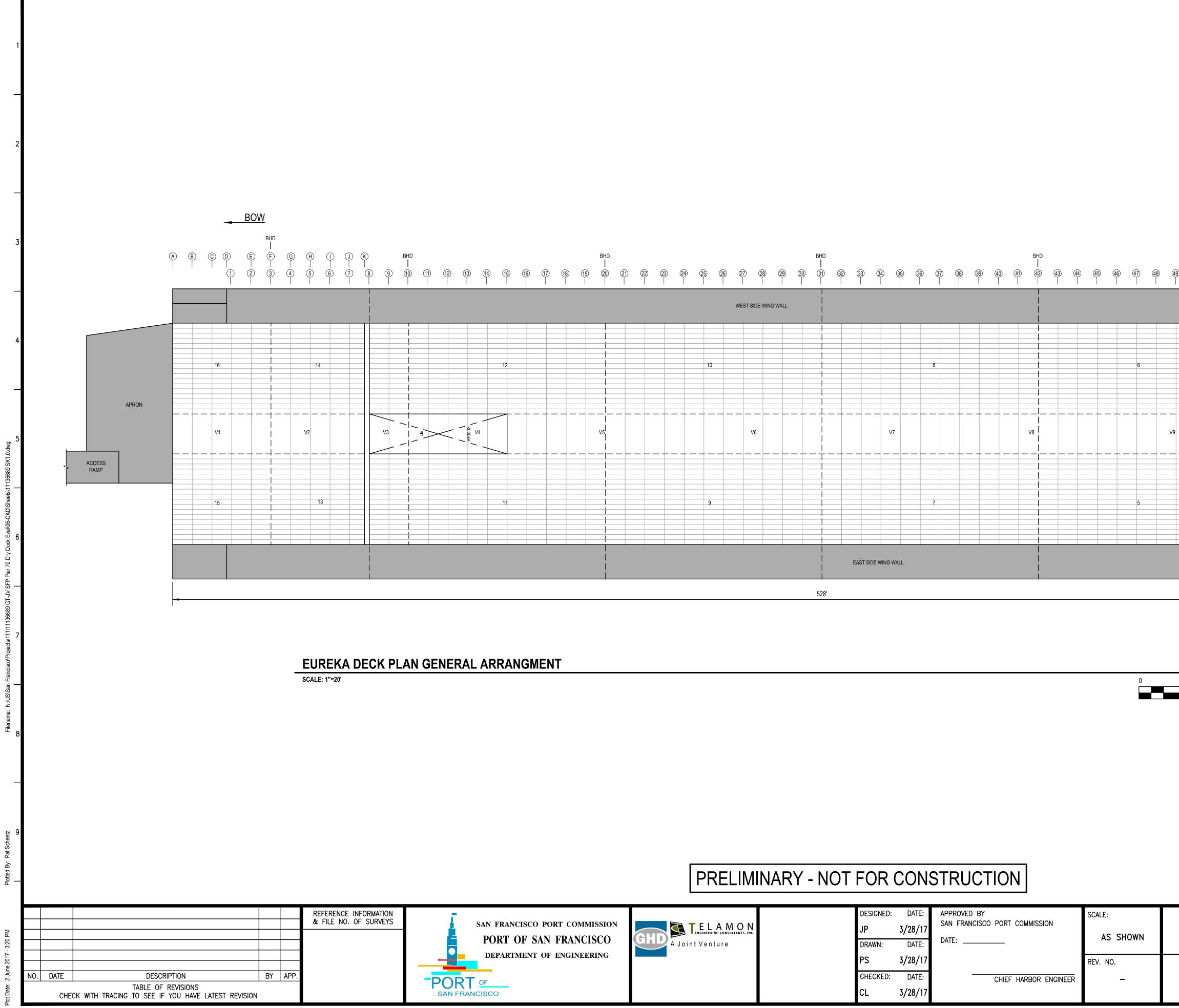
N/A

48 Bonds & Insurance @ 2%

Date: 6/2/2017R1

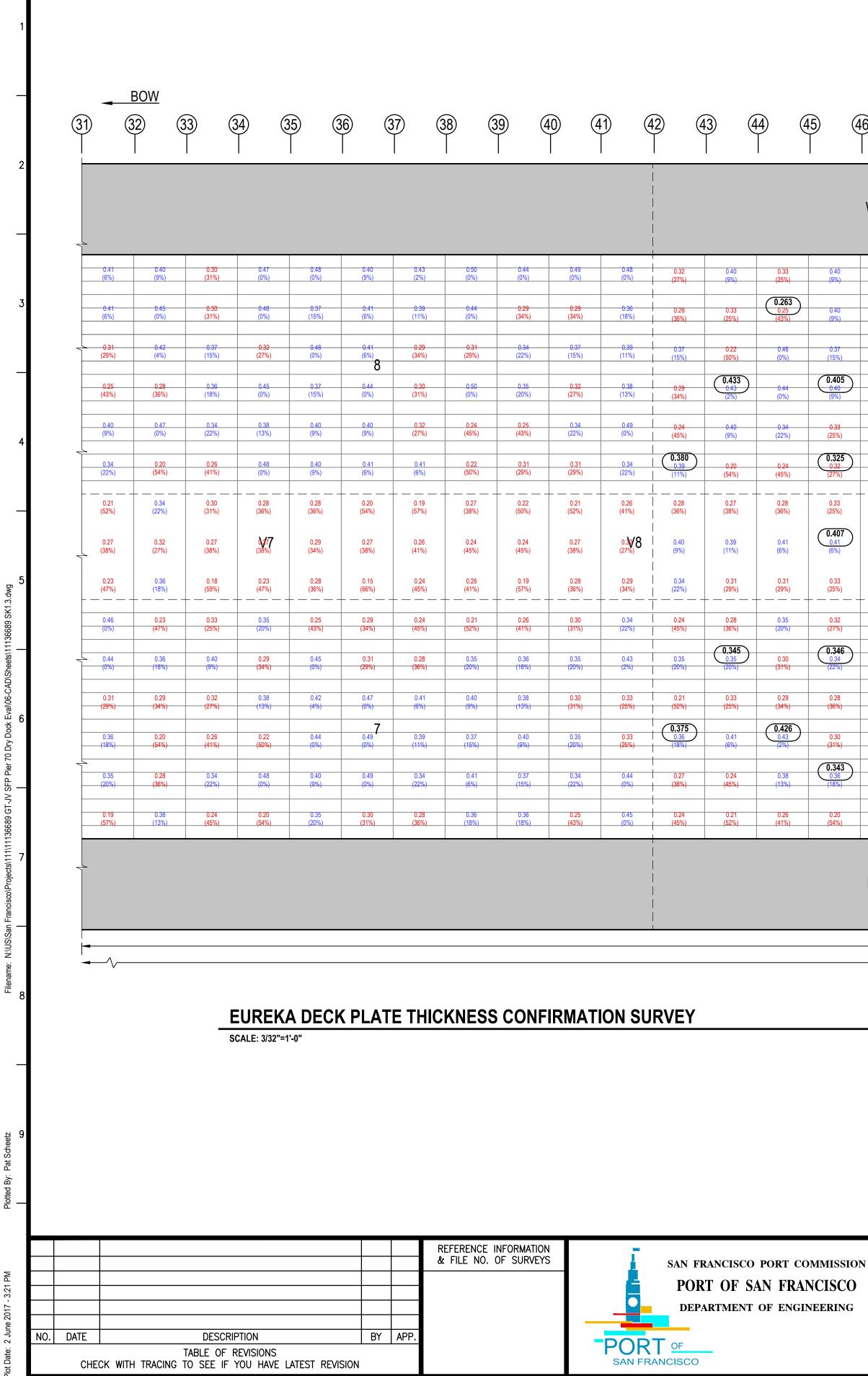
Port of San Francisco, Dry Dock Eureka Repairs Preliminary Estimate of Probable Repair Costs Based on Structural Assessment Report 4) Estimate Details - Long Term Repairs

LINE REF.	ITEM NO.	DESCRIPTION	QUANTITY	UNIT	MATERIAL \$ U.C. TOTAL	DURATION HRS	BOR \$ TOTAL	EQUI U.C.	PMENT \$ TOTAL	TOTAL UNIT COST	TOTAL ESTIMATE \$
49							 				
50		Subtotal									
51		General Contractor's Overhead And Profit @ 10%		N/A							
52							 				
53		Total Estimated Repair Costs base on Self-Performed work by Shipyard Crews			3,525,688		2,747,105		258,353		6,531,146


_

Date: 6/2/2017R1

	M Lee Corporation		
	<u>Project Query Sheet</u>		
	TO: Craig Lewis of GHD		
I	FROM: Franklin Lee of M Lee Corp)	
MLC Job No.	1255	Sheet No.	
Job Name:	Eureka Dry Dock Repair	Date: 5/16/2017	


Item	Drwg/Spec	Queries	Answers
1	Short Term Repairs	What length of angle should be assumed for each damaged stiffener location?	Each damaged stiffener location is repaired with 16" long section of L7x4 per Detail 1/Sheet SK3.0.
2	Short Term Repairs	What percent of damaged areas noted on SK2.1 and 2.2 should receive new 1/2" plate?	30% of damaged areas noted on SK 2.1 and 2.2 receive new ½" plate (~7,000 square feet.)
3	Short Term Repairs	What is the extent of coating?	Coating is limited to weld locations and new plate and stiffeners.
4	Long Term Repairs	What area of deck will be repaired?	32,000 square feet of deck area receives Detail 2/Sheet SK3.0. As mentioned in the meeting, the deck area would be cut out from above, removed by small mobile crane and replaced with a panel section consisting of plate with L7 stiffeners pre- welded. Welding to the existing frame members would be done from inside the compartments.
5	Long Term Repairs	Please clarify the extent of coating.	Panels sections are coated prior to being installed. Field coating is done after installation and welding. Compartment interiors will be recoated as well.
6			
7			
8			
9			

Appendix B Drawings – Existing Conditions

COMMISSION ANCISCO	GHD A Joint Venture	DESIGNED: JP DRAWN:	DATE: 3/28/17 DATE:	APPROVED BY SAN FRANCISCO PORT COMMISSION DATE:	SCALE: AS SHOWN	
GINEERING		PS	3/28/17		REV. NO.	
		CHECKED:	DATE:	CHIEF HARBOR ENGINEER	-	
		CL	3/28/17			

STERN	
BHD L M N O P Q R S T U V 1 50 51 52 53 54 55 56 57 58 59 60 61 CONTROL HOUSE 7	
V10 V11 P V12 Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom Image: Sovar Doom	
20' 40'	
PIER 70 DRYDOCK EUREKA CERTIFICATIONCONTRACT NO. GT-02TECHNICAL REVIEW AND INSPECTIONDRAWING NO.	
DECK PLAN GENERAL ARRANGEMENT SK1.0	

D

R

(4	5) (4	46) (4	47) (4	18) (4	9 (5	i0) (E	51) (5	2) (5	3) (5		T)	N) (0 	T)		Ţ	R) 30) (6 	S I I
		WEST S		G WALL									CONTRO HOUSI]		
3 %)	0.40 (9%)	0.29 (34%)	0.29 (34%)	0.29 (34%)	0.17 (61%)	0.30 (31%)	0.35	0.28 (36%)	0.30 (31%)	0.31 (29%)	0.32 (27%)	0.40 (9%)	0.40 (9%)	0.43 (2%)	0.29 (34%)	0.23 (47%)	0 (5
63 5 %)	0.40 (9%)	0.36 (18%)	0.45	0.37 (15%)	0.34 (22%)	0.28 (36%)	0.40 (9%)	0.29 (34%)	0.21 (52%)	0.40 (9%)	0.32 (27%)	0.37 (15%)	0.42 (4%)	0.27 (38%)	0.28 (36%)	0.29 (34%)	0 (2
6 ()	0.37 (15%)	0.21 (52%)	0.25 (43%) 6	0.34 (22%)	0.34 (22%)	0.35 (20%)	0.31 (29%)	0.31 (29%)	0.41 (6%)	0.36 (18%)	0.40 (9%)	0.33 (25%) 4	0.44 (0%)	0.21 (52%)	0.37 (15%)	0.38 (13%)	0 ((
4 (6)	0.405 0.40 (9%)	0.33 (25%)	0.30 (31%)	0.390 0.42 (4%)	0.27 (38%)	0.46 (0%)	0.400 0.38 (13%)	0.27 (38%)	<u>0.23</u> (47%)	<u>0.40</u> (9%)	<u>0.28</u> (36%)	0.30 (31%)	0.40 (9%)	0.45 (0%)	0.22 (50%)	0.36 (18%)	0 (2
4 %)	0.33 (25%)	0.32 (27%)	0.247 0.20 (54%)	0.28 (36%)	0.24 (54%)	0.37 (15%)	0.25 (43%)	0.35 (20%)	0.31 (29%)						 		
4 %)	0.325 0.32 (27%)	0.397 0.39 (11%)	0.40 (9%)	0.26 (41%)	0.337 0.33 (25%)	0.36 (18%)	0.24 (45%)	0.33 (25%)	0.21 (52%)		```				 		
8 %)	0.33 (25%)	0.30 (31%)	0.32 (27%)	0.40 (9%)	0.29 (34%)	0.31 (29%)	0.47 (0%)	0.34 (22%)	0.37 (15%)						<u> </u> 		- / -
.1 6)	0.407 0.41 (6%)	0.30 (31%)	0.40 (9%)	0.31 V9 (29%)	0.27 (38%)	0.35 (20%)	0.42 (4%)	0\$210 (27%)	0.35 (20%)			V11	1	PIT		V12	SONAR DOME
11 %)	0.33 (25%)	0.27 (38%)	0.27 (38%)	0.26 (41%)	0.482 0.49 (0%)	0.33 (25%)	0.410 0.40 (9%)	0.29 (34%)	0.35 (20%)						` . 		
5 %)	0.32 (27%)	0.23 (47%)	0.30 (31%)	0.279 0.25 (43%)	0.49 (0%)	0.21 (52%)	0.32 (27%)	0.32 (27%)	0.38 (13%)		/				 		
0 %)	0.346 0.34 (22%)	0.413 0.41 (6%)	0.26 (41%)	0.32 (27%)	0.23 (47%)	0.24 (45%)	0.380 0.34 (22%)	0.31 (29%)	0.22 (50%)						 		
9 %)	0.28 (36%)	0.31 (29%)	0.38	0.40	0.385 0.36 (18%)	0.42 (4%)	0.31 (29%)	0.453 0.46 (0%)	0.33 (35%)	0.31 (29%)	0.40 (9%)	0.33 (25%)	0.36 (18%)	0.35	0.34	0.41	0 (1
26 3	0.30 (31%)	0.32 (27%)	5 0.44 (0%)	0.38	0.40 (9%)	0.42	0.30	0.397 0.40 (9%)	0.32 (27%)	0.33 	0.27 (38%)	3 0.36 (18%)	0.29 (34%)	0.38	0.29	0.32	0
8	0.343 0.36 (18%)	0.35 (20%)	0.380 0.40 (9%)	0.39 (11%)	0.39 (11%)	0.34	0.37 (15%)	0.36 (18%)	0.24 (45%)	0.31 (29%)	0.24 (45%)	0.27 (38%)	0.24 (45%)	0.34	0.34	0.29 (34%)	0
6 %)	0.20 (54%)	0.20 (54%)	0.21 (52%)	0.264 0.24 (45%)	0.17 (61%)	0.40	0.20 (54%)	0.28	0.23 (47%)	0.43	0.30 (31%)	0.37	0.32	0.28 (36%)	0.37	0.20 (54%)	0(4
		EAST S	IDE WING	WALL													
		528	8' TOTAL LENG	GTH													

н

PRELIMINARY - NOT FOR CONSTRUCTION

F

G

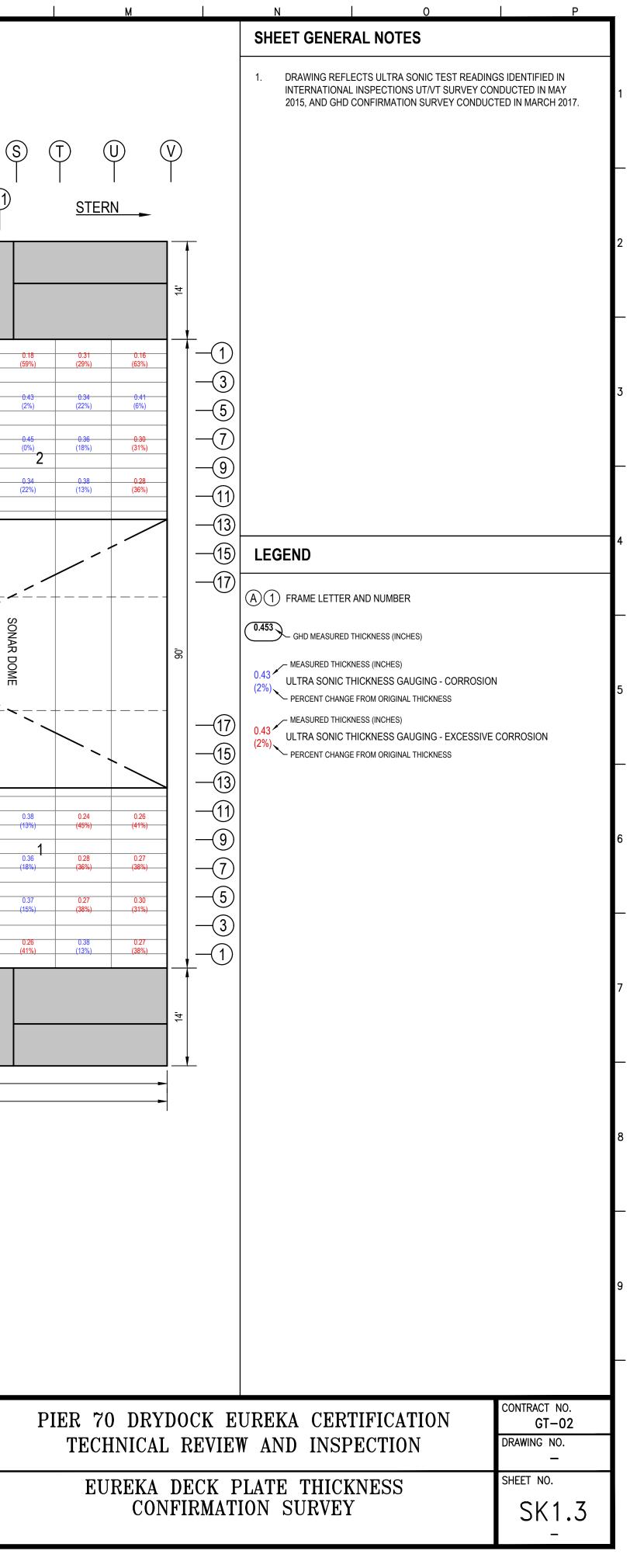
F

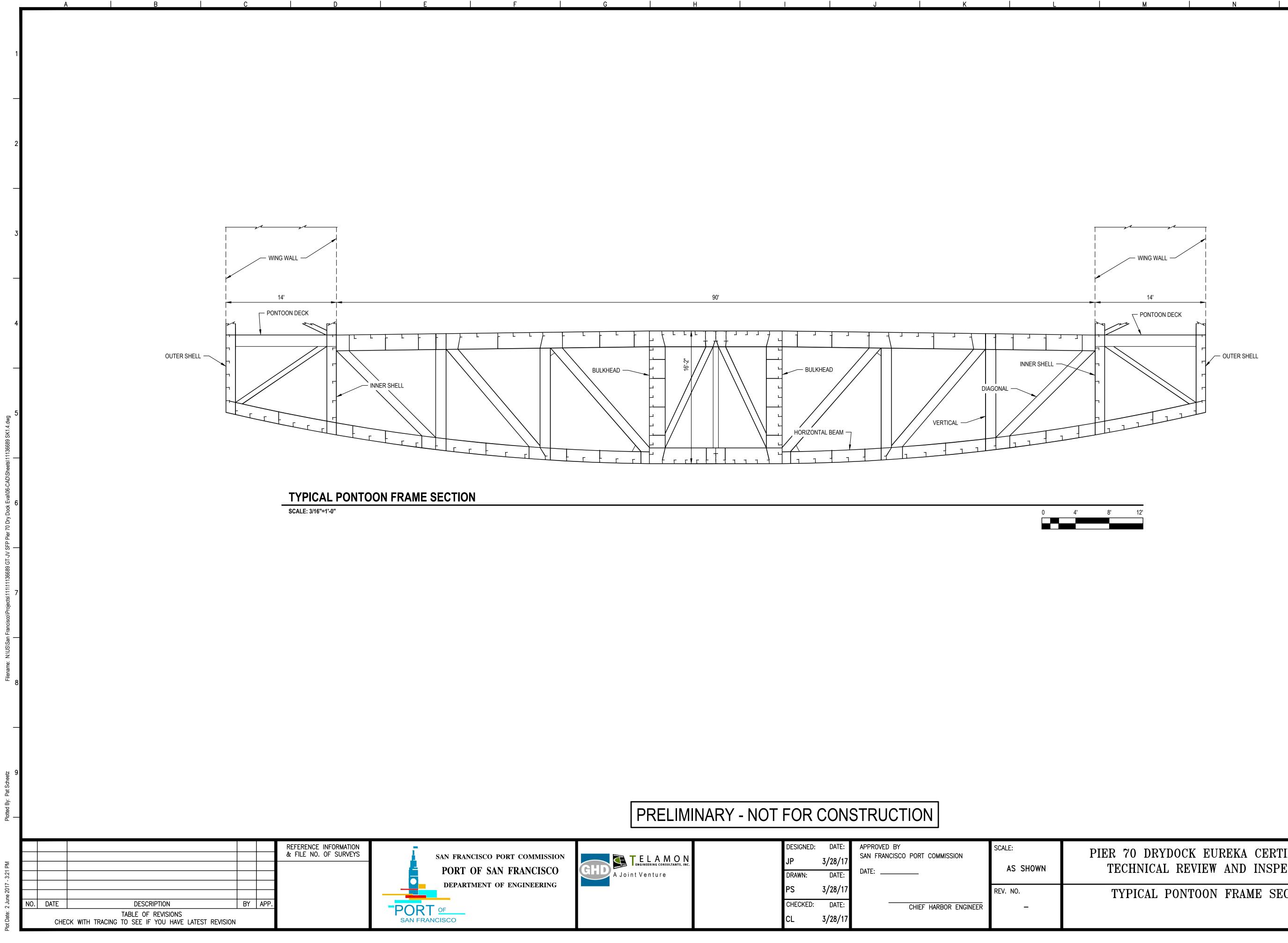
DESIGNED:	DATE:	A
JP	3/28/17	S
DRAWN:	DATE:	
PS	3/28/17	
CHECKED:	DATE:	
CL	3/28/17	

APPROVED BY SAN FRANCISCO PORT COMMISSION DATE: _____

CHIEF HARBOR ENGINEER

PLAN NORTH

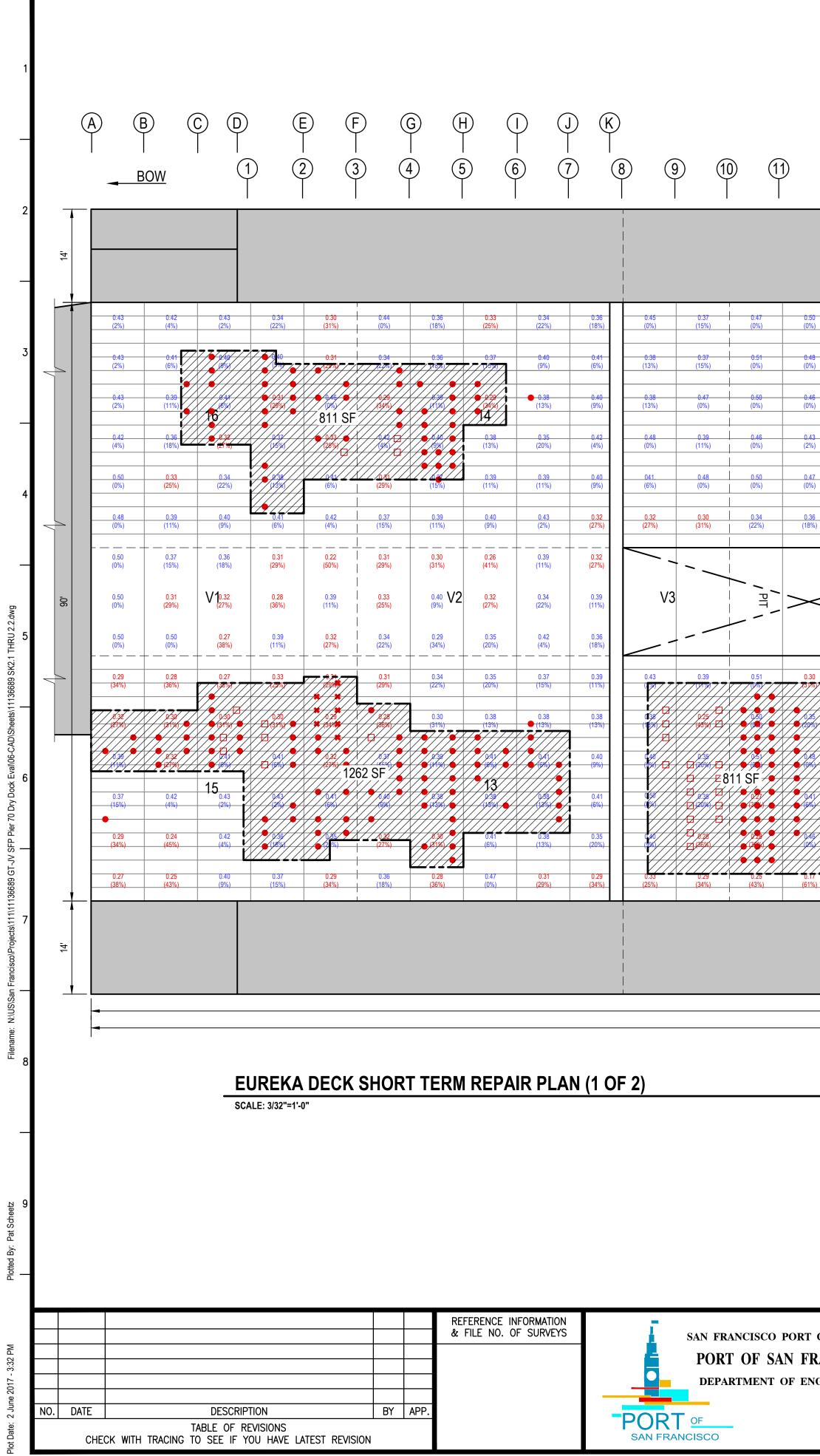

SCALE:


REV. NO.

AS SHOWN

_

K



OMMISSION NCISCO	GHD A Joint Venture	,	DESIGNED: JP DRAWN:	DATE: 3/28/17 DATE:	APPROVED BY SAN FRANCISCO PORT COMMISSION DATE:	SCALE: AS SHOWN	
INEERING		-	PS CHECKED: CL	3/28/17 DATE: 3/28/17	CHIEF HARBOR ENGINEER	REV. NO. —	

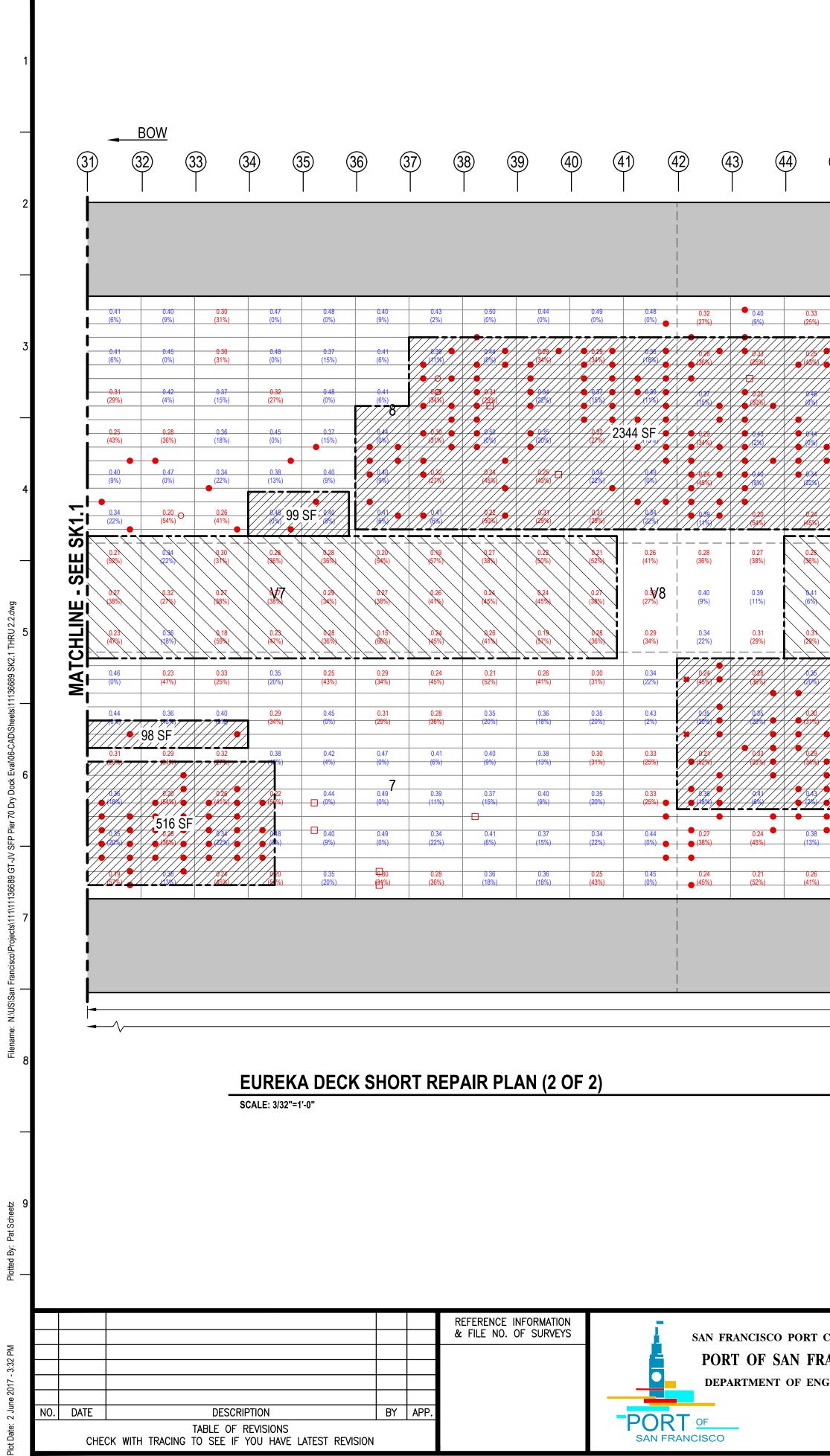
PIER 70 DRYDOCK EUREKA CERTIFICATION	CONTRACT NO. GT-02
TECHNICAL REVIEW AND INSPECTION	DRAWING NO. —
TYPICAL PONTOON FRAME SECTION	SHEET NO.
	SK1.4
	-

Appendix C

Drawings – Repair Concepts

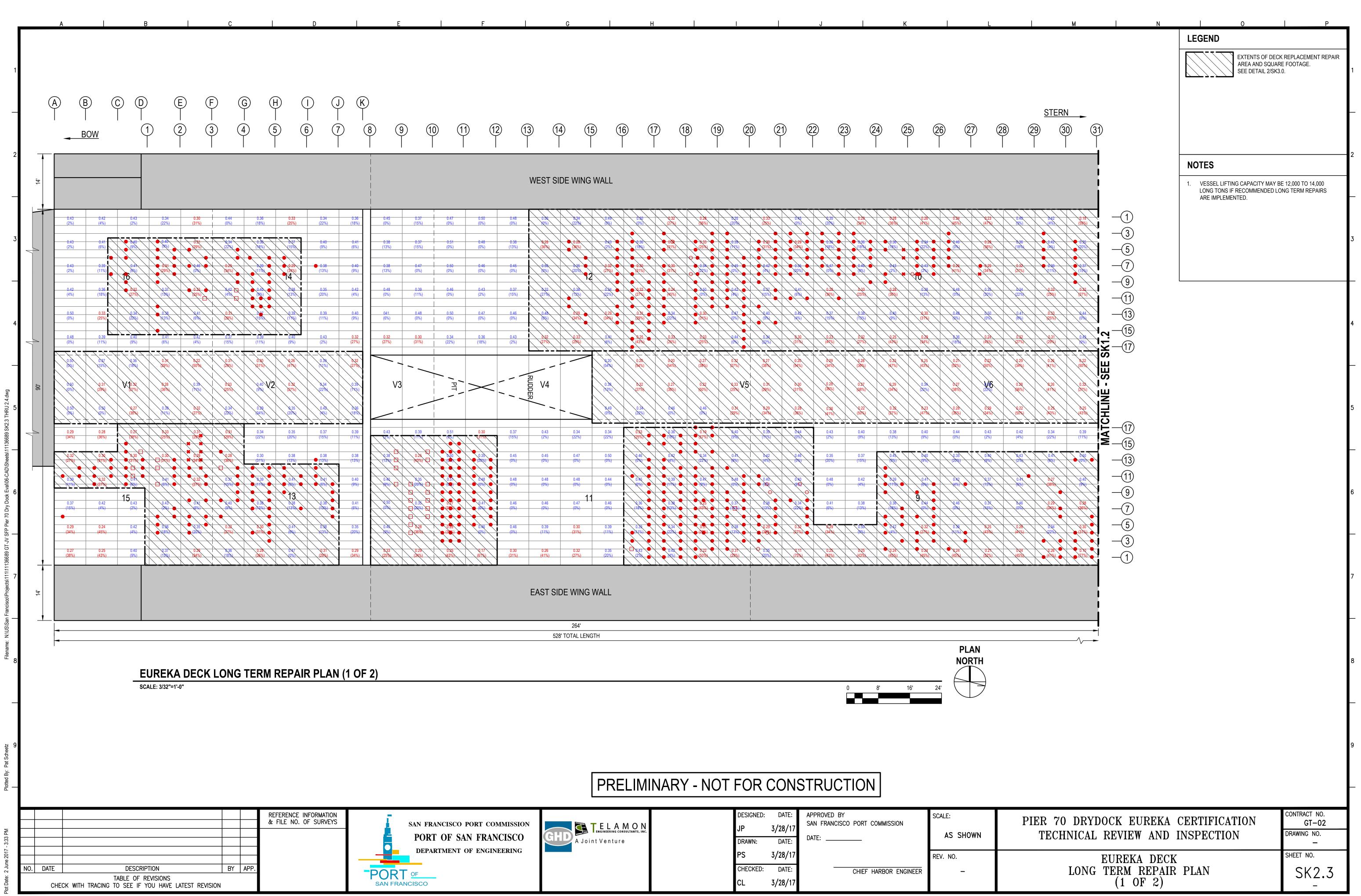
С

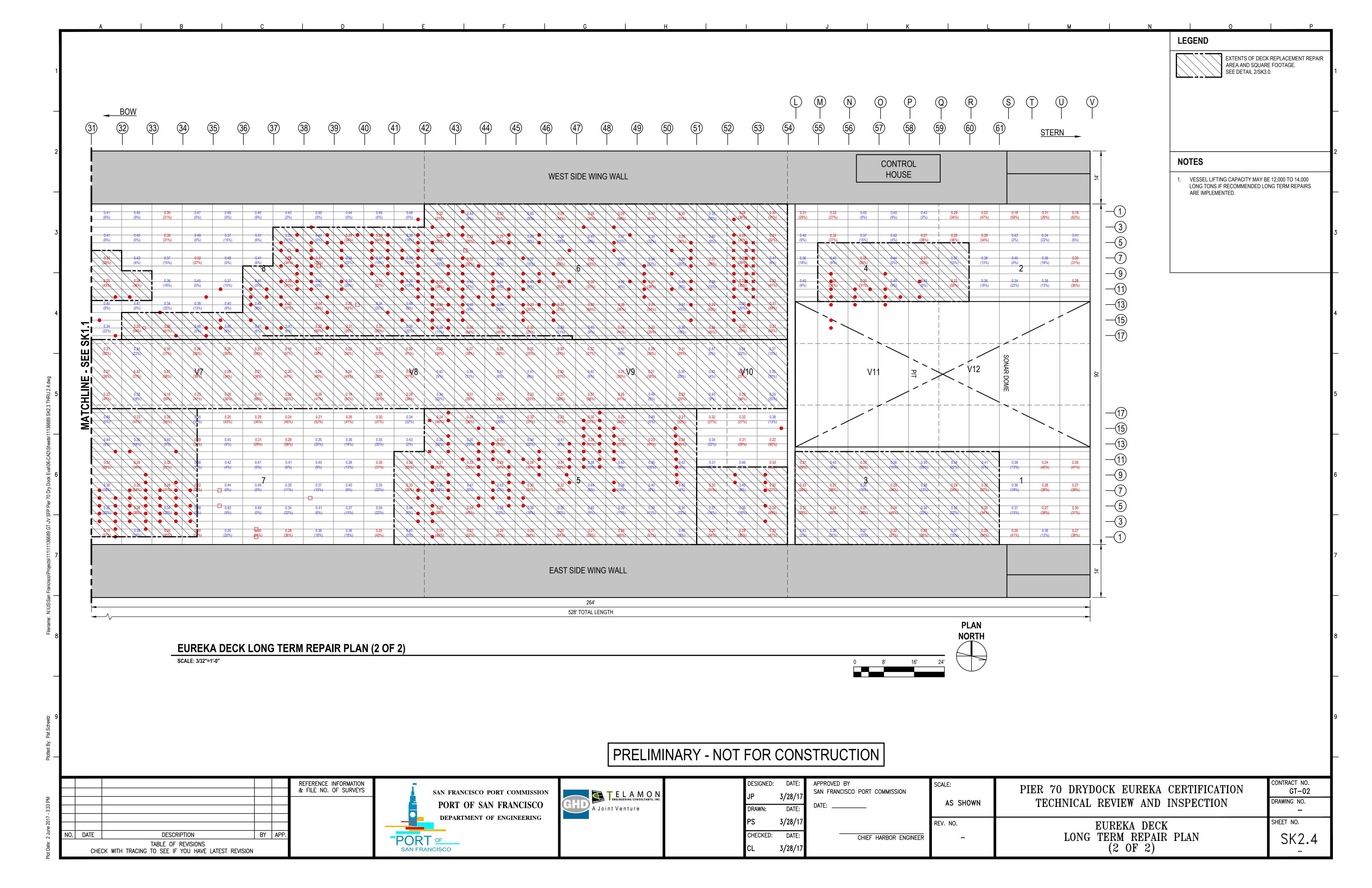
В

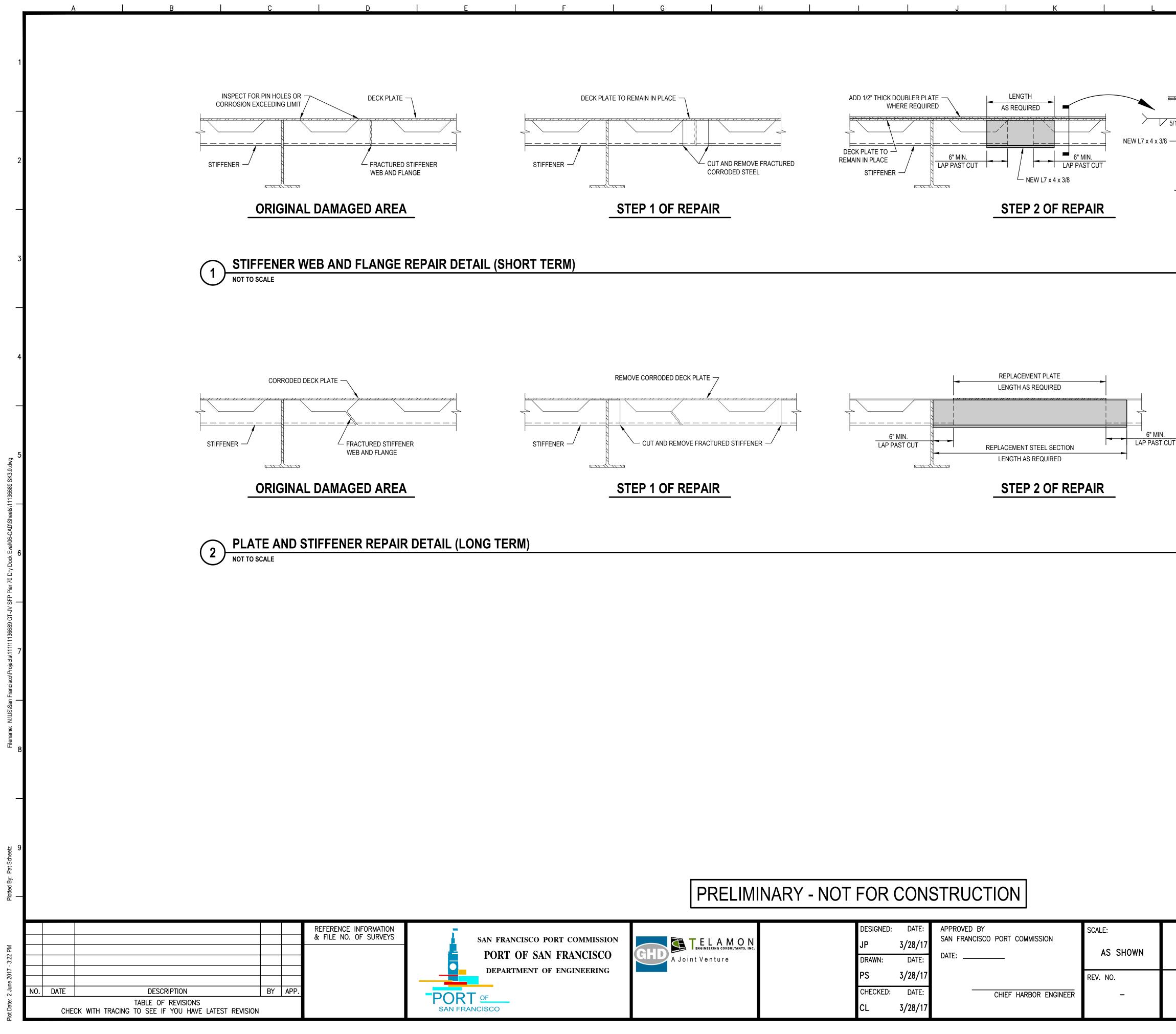

F

D

F	l	G	I	н		1	I	I		J	I	ĸ		1	L	I		м	1	N	1	0	l P
																					LEGEND		·
																							TENTS OF REPAIR AREA DTAGE. SEE DETAIL 1/SK3.0.
																							TENTS OF NEW 1" COVER
																	<u>STERI</u>					PLATE.	TENTS OF NEW 1 COVER
(12) (12)	3 (14) (1	5) (1	6 (1	7) (18) (19)	20	(21)	(22)	23		4) (2	5 (2	6 2	7 (2	8) (2	29 (3	0 (3	D				
1	I	1		I	1 1		1	1	1	1	1		I	l			I		1		NOTES		
	WEST S	DE WING	WALL																	,	VESSEL LIFTIN 7,000 LONG TO	ONS IF RECOMMENI	BE APPROXIMATELY DED SHORT TERM
50 0.48	0.50	0.34	0.49	0.50	0.32	0.28	0.35	0.33	0.45	0.35	0.29	0.28	0.26	0.24	0.23	0.40	0.42	0.18	-(1)	2	2. REPAIR QUAN	IMPLEMENTED. TITIES ASSUME 55% E 1/2" DOUBLER PLA	6 OF REPAIR AREAS
6) (0%) 18 0.38	0.28	(22%)	(0%)					9.39	h2 -		(34%)	(36%)		(45%)	0.28	(9%)	(4%)	(59%)					
6 0.45	(36%)				X [2232 SF								(36%)	(18%)	189 S	F P	-5 -7				
3 0.37	(0%) 	20%) ////////////////////////////////////								<u> </u>					37 SF	0.34	0.33	0.32					
) (15%)	0.48	×3%/	828					949	0.42	0.37	(25%) 0.38	(36%)	0.30	0.48	0.50	0.41	0.33	0.44	-11 -13				
) (0%)	0.32	0.33	0.41		0.33	0.33		0.34	0.30	0.23	(13%)	(9%)	(31%) 0.29	0%)	0%)	(6%) 0.32	0.31	0%)					
6) (2%)	(27%)	(25%)	(6%)		(25%)			(22%)	(31%)	(47%)	(27%)	(43%)	(34%)		(45%)	(27%)	(29%)	(0%)					
	RUVA		0.20 (54%)	0.20 (54%)	(54%)	(38%)	(27%) (27%)	(38%)	(54%)	(34%)	(30%)	(47%)	(43%)	(5%)	(50%)	(34%)	(x1%)	(50%)	SEE				
<			0.38 (13%)	0.32 (27%)	(38%)	10.82 (50%)	(25%) (25%)	0.3% (29%)	(31%)	(36%)	0.X/ (38%)	(34%)	(<u>\$</u> 2%)	(38%)		0.28 (36%)	N,26 (41%)	0.32 (2 7 %)					
			0.49 (0%)				0.31	(34%)	(36%)	0.326	0.22 (50%)	0.3 <u>8</u> (<u>8</u> 7%)	823 (47%)	0.28 (36%)	0.529 (34%)	(50%)	0.25	0.25 (43%)					
0.37	0.43 (2%)	0.34 (22%)	0.34 (22%)	0.3			/ /	0.39 (11%)	0.44 (0%)	0.43 (2%)	0.40 (9%)	0.38 (13%)	0.40 (9%)	0.44 (0%)	0.43 (2%)	0.42 (4%)	0.34 (22%)	0.39 (11%)					
0.45	0.45	0.47 (0%)	0.50 (0%)			9:34 92:46 92:46	0 41 (9 6)	0.42	0.46	0.35	0.37 (15%)	0.45	0.40	0.35	0.40 (9%)	0.43	0.41 (6%)	42 SF	-(13)				
8 0.48 (0%)	0.48	0.48	0.44	0.5						0.48	0.42 (4%)				0.37 (15%)	0.41 (6%)	0.27	0.40 (9%)					
0.46	0.46	0.47	0.46			1233 SF	●			0.41 (6%)	0.38 (1 3%)		- 541 SF -		0.37 (15%)	0.46 (0%)	¥29 	0.28 (36%)	$-\overline{7}$				
0.46 (0%)	0.39 (11%)	0.30 (31%)	0.39 (11%)							0.29 (34%)	0.50 (0%)				0.25 (43%)	0.26 (41%)	247	SF ^{V 34%}	-5 -3				
0.30 .) (31%)	0.26 (41%)	0.32 (27%)	0.35 (20%)				• 8.37 29%	(20%)	0.11 (75%)	0.25 (43%)	0.25 (43%)	0.24 (45%)	0.24 (45%)	0.24 (45%)	0.21 (52%)	0.24 (45%)	8:28 (1) (1) (1) (1) (1) (1) (1) (1)						
			14/411																				
	EAST S	IDE WING	VVALL																				
	52	264' 28' TOTAL LENG	GTH] 1				
														PL NOI				/\ >	-				
													401 0	\square									
										0		8'	16' 2'	4'	フ								
												7											
			PRE	ELIMI	NARY	- NO1	r for	CON	ISTR	RUCT	ION												
COMMISSIO	N						DESIGNE		SAN	oved by Francisco	PORT CO	OMMISSION	SC	ALE:		PI	ER 70	DRYI	DOCK EUR	EKA CE	CRTIFICA'	ΓION	CONTRACT NO. GT-02
RANCISCO			ELA ENGINEERING CO	MON N INSULTANTS, INC. e			JP DRAWN:	3/28/1 DATE:						AS SHO	WN	_			REVIEW A				DRAWING NO.
NGINEERING							PS CHECKED	6/2/1	_			ARBOR ENG		V. NO.				SHUDI	EUREKA I TERM RE				
							CL	3/28/1						_					(1 OF)	2)			SK2.1


F	T	15 1	н 6 (17	7) (18)	(19)	20 (2	21) (22) (23)	24	к (25)	26)	27) (2	8) (2	<u>STERN</u>)		37 SF A	ND SQUARE FOOT	ENTS OF REPAIR ARE AGE. SEE DETAIL 1/S	5K3.0. 1
$\begin{array}{c ccccc} 0.50 & 0.48 & 0.38 & 0.38 & 0.38 & 0.38 & 0.38 & 0.38 & 0.38 & 0.38 & 0.48 & 0.46 & 0.45 & 0.0\% & 0.0$	(0%) (2 0.28 (36%) (3 0.50 (0%) (2 0.32 (27%) (2 0.48 0.48 0.43 0.43 0.43 0.43 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.50 0.45 0.50 0.45 0.50	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			(36%) (25%)	35 0.33 (25%) 39 2232 SF 942 44 931 44 931 44 0.34 931 44 0.34 931 44 0.34 931 44 0.34 931 44 0.34 931 33 5 0.37 0.38% 0.38% 0.38% 0.31 0.34 0.39 0.1 0.39 0.1 0.39 0.1 0.40 1.40 0.40 1.40 0.40		0.35 (20%) 6.36 (18%) 0.37 (15%) 0.23 (47%) 0.23 (47%) 0.23 (47%) 0.23 (47%) 0.23 (47%) 0.23 (47%) 0.23 (47%) 0.23 (47%) 0.23 (47%) 0.23 (47%) 0.23 (47%) 0.23 (47%) 0.23 (47%) 0.23 (47%) 0.28 (38%) 0.35 (20%) 0.35 (20%) 0.35 (20%) 0.29 (34%) 0.25 (34%) 0.25 (34%) 0.25 (34%) 0.25 (34%) 0.25 (34%) 0.25 (35%) 0.25	0.29 (34%) (36) (34%) (36) (17) (17)	%) (41%) (41%) (32%) (32%) (32%) (32%) (13%)	0.28 (38%) 0.28 (38%) 0.28 (38%) 0.27 (38%) 0.27 (38%) 0.27 (38%) 0.27 (38%) 0.27 (38%) 0.27 (38%) 0.27 (38%) 0.27 (38%) 0.27 (38%) 0.27 (38%) 0.27 (38%) 0.27 (38%) 0.27 (38%) 0.27 (38%) 0.28 (36%)0	0.23 (47%) 0.28 (36%) 37 SF 0.35 (20%) 0.50 (0%) 0.24 (45%) 0.22 (50%) 0.22 (50%) 0.22 (50%) 0.22 (50%) 0.22 (34%) 0.37 (15%) 0.37 (15%) 0.37	0.40 (9%) 0.36 (18%) 0.32 (27%) 0.34 (22%) 0.41 (6%) 0.32 (27%) 0.41 (6%) 0.22 (27%) 0.23 (27%) 0.41 (6%) 0.42 (4%) 0.43 (2%) 0.43 (2%) 0.44 (6%) 0.44 (6%) 0.42 (4%)	0.42 (4%) 9459 189 SF 959 1194 0.33 (25%) 0.33 (25%) 0.33 (25%) 0.33 (25%) 0.33 (25%) 0.33 (25%) 0.33 (25%) 0.34 (29%) 0.26 (41%) 0.25 (41%) 0.25 (41%) 0.25 (41%) 0.25 (41%) 0.25 (41%) 0.25 (41%) 0.27 (38%) 0.28 (38%) 0.28 (38%) 0.27 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.27 (38%) 0.28 (38%) 0.27 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.27 (38%) 0.28 (38%) 0.27 (38%) 0.28 (38%) 0.27 (38%) 0.28 (38%) 0.27 (38%) 0.27 (38%) 0.27 (38%) 0.27 (38%) 0.27 (38%) 0.27 (38%) 0.27 (38%) 0.27 (38%) 0.27 (38%) 0.27 (38%) 0.27 (38%) 0.27 (38%) 0.27 (38%) 0.27 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0.28 (38%) 0 (38%) 0 (38%) 0 (38%) 0 (38%) 0 (38%) 0 (38%	0.32 (27%) 0.44 (0%) 0.49 (0%) 0.49 (0%) 0.49 (0%) 0.32 (27%) 0 (27%) 0 (27%) 0 (27%) 0 (27%) 0 (27%) 0 (27%) 0 (27%) 0 (27%) (27%) 0 (27%) 0 (27%) ($\begin{array}{c} -1 \\ -3 \\ -5 \\ -9 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1$	1.	7,000 LONG TON REPAIRS ARE IM REPAIR QUANTIT	s if recommendi Plemented.	OF REPAIR AREAS	
		/ING WALL 64' LL LENGTH						0	8'	16'											
rt commission FRANCISCO engineering	GHD	PRE TELA A Joint Venture	MON NSULTANTS, INC.	JARY	- NOT	JP 3/ DRAWN: PS 6/ CHECKED:	DATE: APF SAN 28/17	PROVED BY I FRANCISCO E:	PORT COMMISS	ION I	SCALE: AS SHO REV. NO. —)WN	PI	TECHN		OCK EURI REVIEW A EUREKA I TERM RH (1 OF	AND INS DECK EPAIR F	SPECTION		CONTRACT NO. GT-02 DRAWING NO. - SHEET NO. SK2.1 -	





F G	н	I J	К	L	I M	<u> N O</u>	P P
							(IMATE EXTENTS OF REPAIR AREA UARE FOOTAGE. SEE DETAIL 1/SK3.0. 1
(45) (46) (47)	(48) (49) (50) (51)	L M 52 53 54 55	N O P 56 57 58	Q R 59 60 ((S) (T) (U) (V) $(61) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S$	APPROX PLATE.	(IMATE EXTENTS OF NEW 1" COVER
			CONTROL			NOTES	2
WEST SIDE	WING WALL		HOUSE		4	7,000 LONG TONS IF RE	CITY MAY BE APPROXIMATELY COMMENDED SHORT TERM
	0.29 0.29 0.17 0.30 0	.35 0.28 0.30 0.31 0.32	0.40 0.40 0.43	0.29 0.23	0.18 0.31 0.16	2. REPAIRS ARE IMPLEME 2. REPAIR QUANTITIES AS WILL REQUIRE 1/2" DOL	SSUME 55% OF REPAIR AREAS
(9%) (34%) ((34%) (34%) (61%) (31%) (2	0%) (36%) (31%) (29%) (27%)	(9%) (9%) (2%)	(34%) (47%)			JOLER PLATE.
	0.45 0.37 0.34 0.28 0 (0%) (15%) (22%) (36%) (36%) (36%)	.40 0.29 0.21 0.40 0.32 .9%)	0.37 0.42 0.27 (15%) (4%) (38%)	0.28 0.29 (36%) (34%)		-5	
	0.25 0.34 0.34 0.35 (22%) (22%) (22%) (22%) (22%)	1.31 2.34 0.41 0.36 0.40 9%) (29%) (6%) (18%) (9%)	0.33 0.44 0.21 (25%) (0%) (52%) 4	(15%) (13%)	2	7 9	
		38 224 0.23 0.40 28 3%) 1246 SF (47%) (9%) 36%/	185 SF	0.22 0.36 (50%) (18%)	(22%) (13%) (36%)	-(1)	
	0.20 (54%) (36%) (84%) (35%) (44\%) (44\%) (4\%) (125 0.31 3%) (29%)					4
	0.40 0.26 0.38 9.39 0 (9%) (41%) (25%) (48%) (4	1.24 0.38 0.21 5%) /25%) (52%)				-17	
128 0.33 6%) (37%)		.47 0.34 0.37 0%) (22%) (15%)			SONAR		-
141 0.41 0.30 (31%) (8%) (31%)		.42 0 2210 0.35 1%) (27%) (20%)	V11 P		AR DOME		
).31 9%) (38%) (38%)	(38%) (41%) (0%) (25%) (5	1.40 0.29 0.35 9%) (34%) (20%) 				\sim	5
125////////////////////////////////////		.32 0.32 0.38 7%) (27%) (13%)				(17) (15)	
20 1210 SF	(4/%) (47%) (47%) (27%) (2	1.34 0.31 0.22 2%) (29%) (50%)					—
529 444 444 564 564 564 564 564 564 564 564	9/39/ 0/40 0.36 0/42 0 (18%) 0/42 (2	1.31 0.46 0.33 9%) (0%) (35%) (9%) (9%) (9%)	0.36 (10%) (25%) (10%)	0.34 0.41 (22%) (6%)		-(1)	6
13 0.20 24 (3)46) (27,66)	8.44 0.38 0.40 0.42 0 8.44 0.40 0.42 0 8.44 (9%) 0.40 0.42 0 (3.64 0) 0.42 0 (3.64 0) 0.42 0 (3.64 0) 0.40 0.40 0.40 0.40 0.40 0.40 0.40	22 SF 30 1%) (9%) 88 SF 1 (25%) (38%)	3 0.36 0.29 0.38 (18%) (34%) (13%)	0.29 0.32 (34%) (27%)		9 (7)	Ø
0.38 0.36 0.35 13%) (18%) (20%)	0.40 0.39 0.39 0.34 0 (9%) (11%) (11%) (22%) (1	1.37 0.36 0.24 0.31 0.24 5%) (18%) (45%) (45%)	0.27 0.24 0.34 (38%) (45%) (22%)	0.34 0.29 (22%) (34%)	0.37 0.27 0.30 (15%) (38%) (31%)	-5	_
0.26 0.20 0.20 (11%) (54%) (54%) (1	0.21 0.24 0.17 0.40 0 (52%) (45%) (61%) (9%) (5	I20 0.28 0.23 0.43 0.30 4%) (36%) (47%) (2%) (31%)	0.37 0.32 0.28 (15%) (27%) (36%)	0.37 0.20 (15%) (54%)	0.26 0.38 0.27	-(3) (1)	
							7
EAST SIDE	WING WALL				14'		
2	264'						F
	AL LENGTH			PLAN			
				NORTH			8
			0 8' 16'	24'			
							-
							9
		NOT FOR CONSTRU					
RT COMMISSION	TELAMON Engineering consultants, inc.	DESIGNED: DATE: APPROVED JP 3/28/17	BY CISCO PORT COMMISSION	SCALE:		CK EUREKA CERTIFICATION	
FRANCISCO ENGINEERING	A Joint Venture	DRAWN: DATE:		AS SHOWN		EVIEW AND INSPECTION	DRAWING NO.
		PS 6/2/17 CHECKED: DATE:	CHIEF HARBOR ENGINEER	REV. NO. —		JREKA DECK ERM REPAIR PLAN	SHEET NO. SK2.2
		CL 3/28/17				(2 OF 2)	

DESIGNED:	DATE:	A
JP	3/28/17	5
DRAWN:	DATE:	ו
PS	6/2/17	
CHECKED:	DATE:	
	z /28 /17	

	REMAIN IN PLACE	DECH EFRACTURED	D 1/2" THICK DOUBLER PLATE WHERE REQUIRED		NEW L7 x 4 x 3/8		BRUSH ALL WELDED AREAS, E AND APPLY FINISH COATING.		1	
									3	
	DVE CORRODED DECK PLATE		6" MIN. LAP PAST CUT	REPLACEMENT PLATE LENGTH AS REQUIRED REPLACEMENT STEEL SECTION LENGTH AS REQUIRED		CUT	NEW 1/2" DECK PLAT NEW L7 x 4 x 3/8 <u>NOTE:</u> 1. WIRE BRUSH A	TE NLL WELDED AREAS, PLY FINISH COATING.	4	
	<u>EP 1 OF REPAIR</u>			STEP 2 OF RE						
									8	
			DESIGNED: DATE: APPR	OVED BY	SCALE:	PIER "ፖስ ከ"	RYDOCK EUREKA	CERTIFICATION	9 CONTRACT NO.	
COMMISSION ANCISCO Gineering	ENGINEERING CONSULTANTS, INC. A Joint Venture		JP 3/28/17 SAN DRAWN: DATE: DATE: PS 3/28/17 CHECKED: DATE: CL 3/28/17 3/28/17	FRANCISCO PORT COMMISSION :	AS SHOWN REV. NO. —	TECHNIC	CAL REVIEW AND	INSPECTION	GT-02 DRAWING NO. - SHEET NO. SK3.0 -	

0

N

M

Appendix D Photos

1. North View of along the length of Dry Dock EUREKA

2. East wing wall

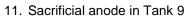
3. North end, exterior view

4. Ramp at south end

5. Close up of pontoon deck corrosion

6. Wide view of pontoon deck corrosion

7. Propeller pit at north end of EUREKA



8. South view of support blocks and interior faces of wing walls

- 9. Typical pipe and steel corrosion at wing wall
- 10. Typical support block

12. Braced frames at Tank 9

13. Roof stiffeners at Tank 6A

14. Roof stiffeners at Tank 6A

15. Roof stiffeners at Tank 6

16. Roof stiffeners and braced frame at Tank 20A

17. Roof stiffeners at Tank 5

18. Roof stiffeners and braced frame at Tank 5

19. Ladder up wing wall at Tank 6

20. Roof stiffeners and braced frame at Tank 6

21. Wall stiffeners at Tank 6

22. Typical marine growth on hull

23. Removal of marine growth for inspection

24. Typical hull deterioration after removal of marine growth

Appendix E

Underwater Inspection Report

GHD-TECI Joint Venture Port of San Francisco Dry Dock EUREKA Underwater Condition Assessment

FINAL REPORT

San Francisco, CA

March 2017

COLLINS ENGINEERS

Safeco Plaza, 1001 Fourth Avenue, Suite 4305 Seattle, Washington 98154 206.682.2140 • www.collinsengr.com

April 21, 2017 Collins Job No. 45-10289

Mr. Craig Lewis Facilities Service Line Leader GHD, Inc. 655 Montgomery Street, Suite 1010 San Francisco, CA 94111

RE: Port of San Francisco – Dry Dock EUREKA Underwater Condition Assessment

Dear Mr. Lewis,

Collins Engineers, Inc. (Collins) is pleased to submit this FINAL document: Dry Dock EUREKA Underwater Condition Assessment FINAL Report. This document is in accordance with the scope of services contained in the Agreement for Professional Services with GHD, Inc., dated March 1, 2017.

This report includes: condition assessment for the underwater hull components of Dry Dock EUREKA, project drawings, the previous inspection report, ultrasonic thickness gauge measurement results, typical photographs, definitions and interpolated tide tables.

Thank you for the opportunity to participate in the execution of this important project.

Very truly yours, COLLINS ENGINEERS INC Daniel G. Stromberg, P Engineer of Record

I hereby certify that this engineering document was prepared by me or under my direct supervision and that I am duly Licensed Professional Engineer under the laws of the State of California.

Daniel G. Stromberg, P.E. #75133

My license renewal date is 12/31/2017

Pages or sheets covered by this seal: Entire Report

UNDERWATER CONDITION ASSESSMENT

FOR

DRY DOCK EUREKA

AT THE

PORT OF SAN FRANCISCO

IN

SAN FRANCISCO, CALIFORNIA

DATES OF INSPECTION: MARCH 5 – MARCH 10, 2017

PREPARED FOR:

GHD – Telamon Engineering Consultants, Inc., Joint Venture 655 MONTGOMERY STREET, SUITE 1010 SAN FRANCISCO, CA 94111

> PREPARED BY: COLLINS ENGINEERS, INC. 1001 4[™] AVENUE, SUITE 4305 SEATTLE, WA 98154 (206) 682-2140

www.collinsengr.com

COLLINS JOB NO. 45-10289.00

Page

Executive Summary	_1
Section 1 – Introduction	_1
1.1 – Project Personnel	2
1.2 – Inspection Procedures	2
Section 2 –Underwater Condition Assessment	_3
2.1 – Dry Dock EUREKA Hull	3
2.2 – Mudline Depths Below the Keel	3
Section 3 –Repair Recommendations	4

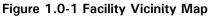
TABLES

1.1-1 – Project Representatives	2
2.1-1 - UT Gauge Readings	_3
2.2-1 – Keel Mudline Elevations	_4

APPENDICES

Appendix A – Inspection Drawings	5
Appendix B – DRS Marine December 2016 Inspection	8
Appendix C – Ultrasonic Thickness Measurements	
Appendix D – Photographs	
Appendix E – Definitions	46
Appendix F – Interpolated Tide Tables	49

EXECUTIVE SUMMARY


An Underwater Condition Assessment of Dry Dock EUREKA was conducted from March 5th to March 10th, 2017 at the Port of San Francisco to assess the condition of the Dry Dock EUREKA hull.

Overall, the Dry Dock EUREKA hull was in FAIR condition with minor deterioration that consisted of section loss as ascertained by ultrasonic thickness gauge measurement. The inspection was performed in accordance with the ASCE Underwater Inspection Guidelines, definitions located in Appendix E.

1.0 INTRODUCTION

Currently, the dry dock is moored to a stationary pier at the Puglia Shipyard at the Port of San Francisco. The dry dock is oriented with the apron and access ramp at the south and the port side moored to the adjacent pier. A map with an approximate location of the limits of inspection is shown below in Figure 1.0-1.

Source: Google Earth

1.1 PROJECT PERSONNEL

The underwater inspection was performed by a four-person team consisting of one professional engineer (P.E.)-diver and three supporting engineer-divers. The primary points of contact for the project are presented in Table 1.1-1 Project Representatives.

Entity	Name	Contact Information		
Port of San Francisco	Matthew Bell, P.E., S.E. Civil Engineer Engineering Division	Pier 1, The Embarcadero San Francisco, CA 94111 <u>matthew.n.bell@sfport.com</u> (415) 274-0457		
GHD - TECI	Craig Lewis, P.E., S.E. Senior Project Manager	655 Montgomery Street, Suite 1010 San Francisco, CA 94111 <u>craig.lewis@ghd.com</u> (415) 296-3605		
Puglia Marine SF Shipyard	Justin Gleaton Dock Master	Pier 70 – 499 20 th Street San Francisco, CA 94107 <u>JGleaton@PugliaMarine.com</u> (415) 829-0395		
Collins Engineers, Inc.	Daniel Stromberg, P.E. Senor Project Manger	1001 Fourth Ave, Suite 4305 Seattle, WA 98154 <u>dstromberg@collinsengr.com</u> (312) 236-4182		
Collins Engineers, Inc.	Adam Cox Assistant Project Manager	1001 Fourth Ave, Suite 4305 Seattle, WA 98154 <u>acox@collinsengr.com</u> (206) 455-9737		

Table 1.1-1 Project Representatives

Source: Collins Engineers, Inc.

1.2 INSPECTION PROCEDURES

The underwater inspection consisted of Level I, II and III level investigation, as defined in Appendix E. At the time of the inspection the dry dock ballast tanks were emptied of water such that the primary hull chine was at the water surface. Level II cleanings to gather Level III ultrasonic thickness (UT) gauge readings were taken along "belt lines" as shown in Appendix A, Sheet S-01. Belt lines 1 to 5 were chosen based on the locations used to gather UT readings by DRS Marine for their December 2016 inspection as shown in Appendix B. Belt line 6 was added for this inspection to further investigate the hull condition. A fixed line was placed along each belt line to guide the engineer-diver while taking UT readings and to ensure that UT readings could be gathered along the same line during future inspections. Level I visual/tactile inspection for the entire submerged portion of the hull was performed by using a tether line linking the engineer-diver to the guide line to facilitate sweeping of the hull for 50 feet in both directions away from the guide line and oriented parallel to the long axis of the hull. Engineer-divers were deployed from the D/V James Eads which was moored to the starboard (west) side of the dry dock at each belt line.

2.0 UNDERWATER CONDITION ASSESSMENT

2.1 DRY DOCK EUREKA HULL

The Hull of Dry Dock EUREKA was found to be in FAIR condition. The average distance between UT readings and the maximum and minimum UT reading values for each belt line was as shown in the table below:

Belt Line	Average Distance Between UT Readings (ft-in)	Max UT Reading (in)	Min UT Reading (in)
1	5′-2″	0.415	0.315
2	3'-8"	0.430	0.325
3	3′-6″	0.420	0.345
4	4'-6"	0.430	0.305
5	4'-0"	0.435	0.320
6	4'-4"	0.435	0.385

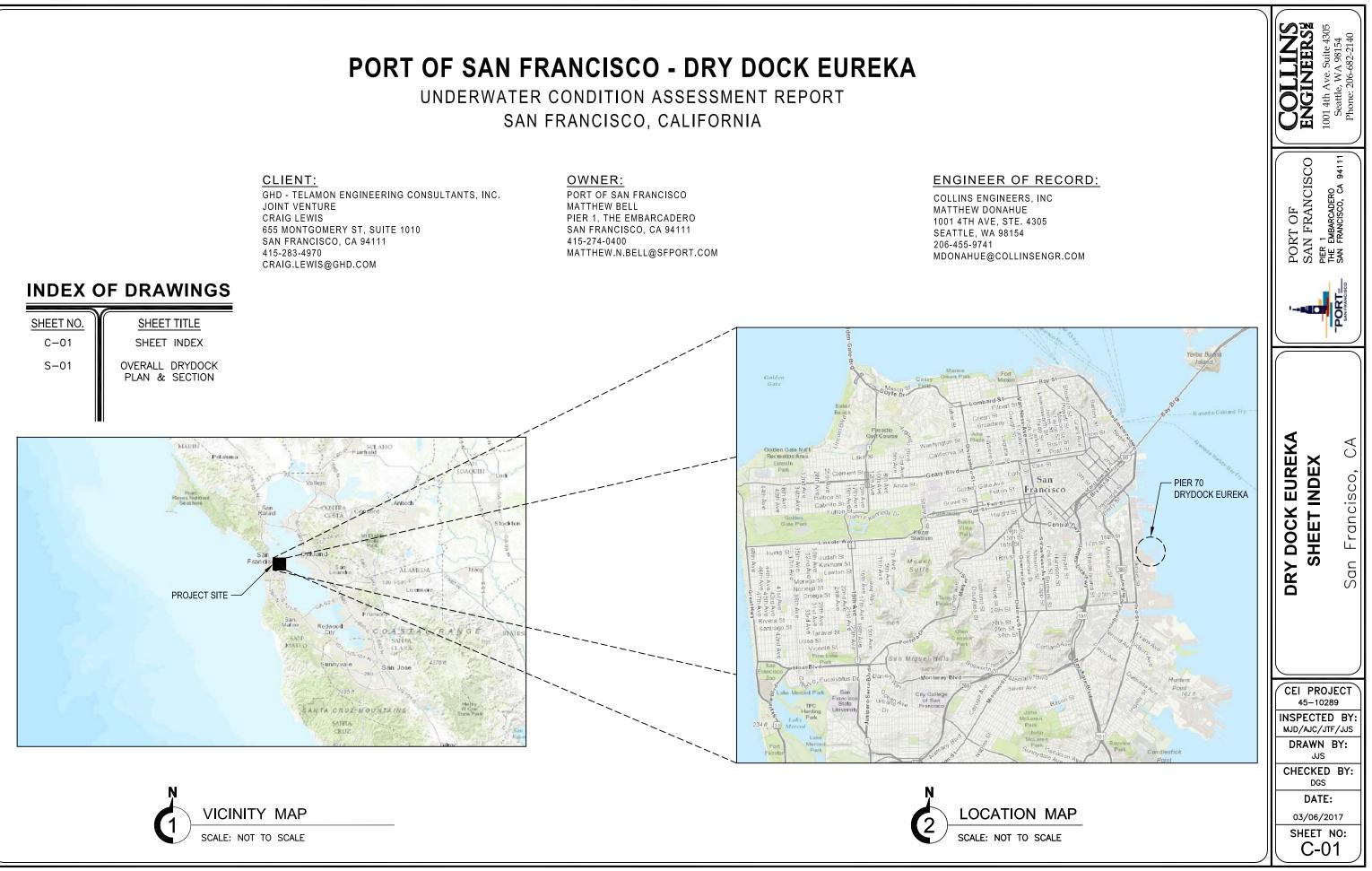
Table 2.1-1 UT Gauge Readings

It is important to note that maximum UT reading values exceeding 0.437 inches (design hull plate thickness) were excluded from the table above. These greater than design thickness values are attributed to weldments on the interior of the hull being picked up by the UT gauge and are excluded as they are not indicative of the current hull plate condition. Complete UT gauge readings are given in Appendix C. In general, there was little to no observable evidence of corrosion on the exterior submerged portion of the dry dock hull. Marine growth present on the hull consisted of various types of hard and soft marine flora and fauna including muscles. Marine growth fully covered the hull within a perimeter zone that extended from the hull edge in towards the keel for a distance of 20 feet around the full perimeter of the hull. Between this perimeter zone and nearer to the keel line marine growth was sparser and covered the hull in small clumps that were randomly distributed. Plate welds and the hull coating system appeared to be intact and functioning as intended. Upon cleaning, hull coating presented with a reddish color indicating the presence of anti-fouling properties. Sacrificial anodes were randomly encountered during the course of the inspection but were not explicitly part of the inspection scope. Observed anode conditions in combination with the overall presentation of exterior hull condition indicates that, although the anodes are being consumed and show loss of section, they are functioning as intended. Photographs of typical conditions as described above are given in Appendix D. Definition of condition rating stipulations is provided in Appendix E.

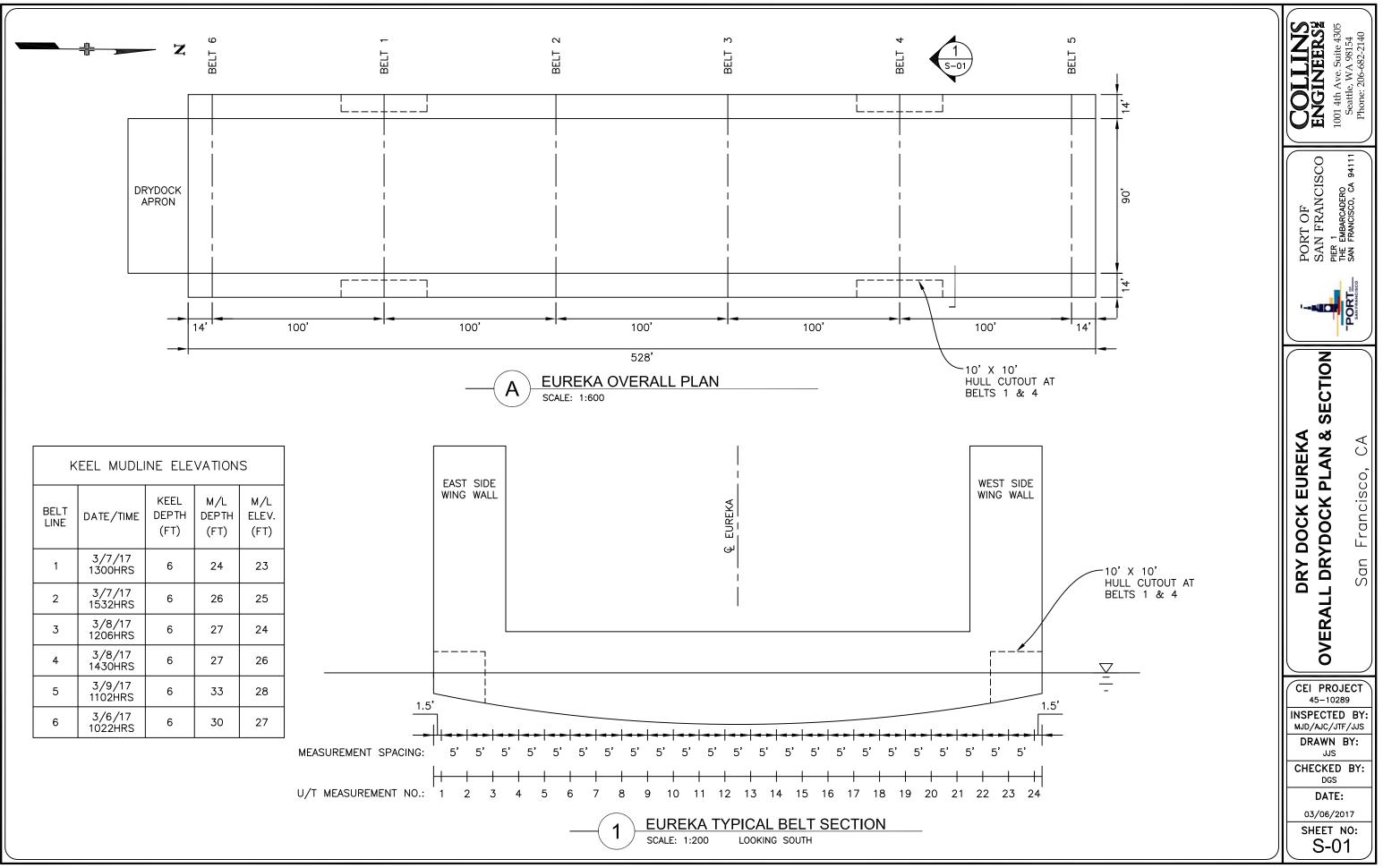
2.2 MUDLINE DEPTH BELOW THE KEEL

During the course of hull inspection, mudline depths were gathered beneath the keel for each belt line by using the pneumo-fathometer system integrated into the engineer-diver's umbilical. The time and date that depths were taken were also recorded for subsequent comparison to local tide tables and calculation of the mudline elevation as compared to a mean-lower-low-water (MLLW) datum. Interpolated tide tables are provided in Appendix F. Mudline elevations below the keel are as shown in the table below:

Belt Line	Date/Time	Keel Depth (ft)	M/L Depth (ft)	M/L Elev. (ft)
1	3/7/17 @ 1300hrs	6	24	23
2	3/7/17 @ 1532hrs	6	26	25
3	3/8/17 @ 1206hrs	6	27	24
4	3/8/17 @ 1430hrs	6	27	26
5	3/9/17 @ 1102hrs	6	33	28
6	3/6/17 @ 1022hrs	6	30	27


Table 2.2-1 Keel Mudline Elevations

Note: M/L Elevations calculated using tide station 9414334 Protero Point, CA, MLLW datum and rounding to the nearest foot.


3.0 REPAIR RECOMENDATIONS

It is recommended that sacrificial anodes that have been fully or significantly consumed to a degree of 75% loss of section or more be replaced throughout the hull. As section loss of hull plating was indicated via UT gauge readings and as there was little or no outward evidence of underwater hull plate corrosion, it is recommended that the interior of the hull plating be cleaned and recoated pursuant to analysis of the results of the interior hull inspection performed by others.

Appendix A – Inspection Drawings

W:\PROJECTS\10289 GHD POSF DRY DOCK 1 UWI\05-ENGINEERING\02-CADD\BASE PLAN.DWG 04/21/2017 01:12:00 PM

W:\PROJECTS\10289 GHD POSF DRY DOCK 1 UWI\05-ENGINEERING\02-CADD\BASE PLAN.DWG 04/21/2017 01:13:44 PM

Appendix B – DRS Marine December 2016 Inspection

DRS MARINE INC.

COMMERCIAL DIVERS DAMS, POWERHOUSES U/W PILE REPAIRS U/W BURNING & WELDING ROVS

525 CHESTNUT STREET VALLEJO, CA 94590 BUS: 707-648-3483 FAX: 707-648-2006 WWW.DRSMARINE.COM

COMPLETE DIVING SERVICES

EUREKA DRY DOCK ULTRASONIC THICKNESS INSPECTION PREPARED FOR

BAE SYSTEMS SAN FRANCISCO

December, 2016

DRS MARINE INC.

COMPLETE DIVING SERVICES

drsmarine@aol.com

525 Chestnut Street Vallejo, CA 94590 PH 707/648-3483

FX 707/648-2006

December 30, 2016

BAE SYSTEMS

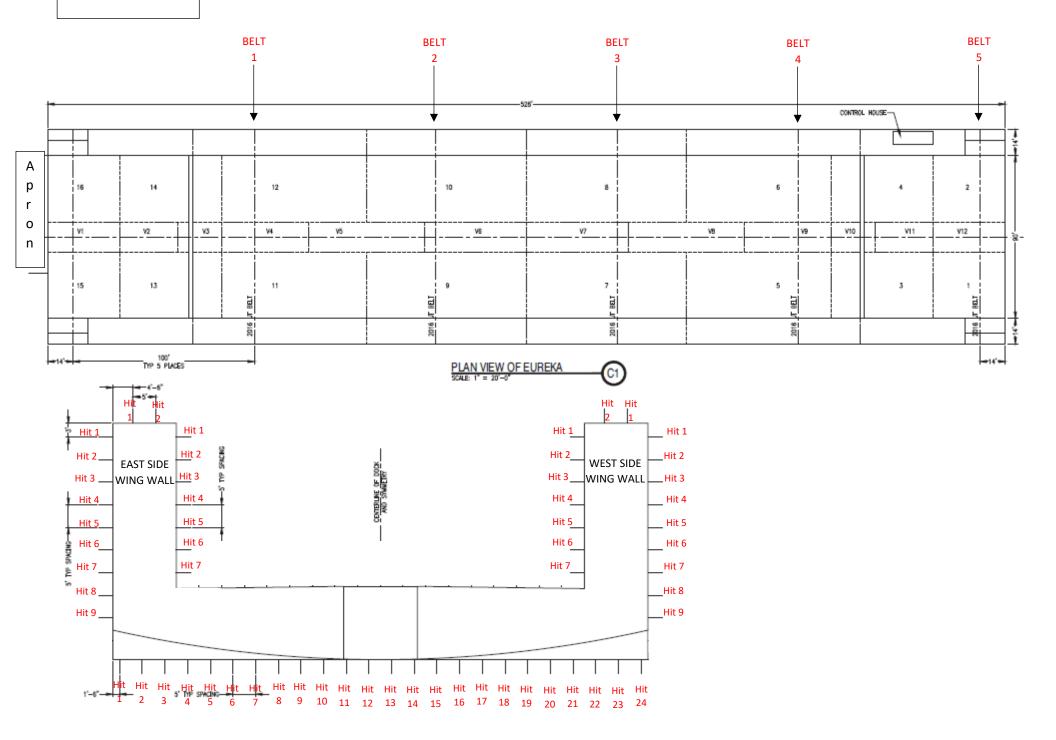
ATTN: Justin Gleaton

RE: Dry dock 2 ULTRA SONIC Thickness Gauging

Project site:EUREKA Dry DockDate of work:12/27/16 - 12/29/16Inspection Site:Pier 80 San Francisco Ca.

INTRODUCTION

DRS marine was contracted to conduct an ultra sonic thickness testing on EUREKA Dry Dock. An inspection and cleaning of the intake/discharge screens will also be completed and details provided to BAE along with pictures in a written report. Underwater readings will be conducted by a 3 man dive team. A man lift will be provided by BAE to allow DRS Marine to reach the areas needed to take readings above the waterline along the inside and outside of the wing walls.


UT GRID PATTERN

The testing would be done along five belts around the dry dock. See **Drawing A** on next page. The test hits are to be taken every 5 feet along each belt. Testing will also be conducted along the Apron at designated locations that are to be provided by BAE.

METHOD

For readings that were needed to be taken underwater, DRS marine used a three man dive crew with surface supplied air diving equipment and a low-pressure diving compressor. The dive crew used a CYGNUS 3 Ultrasonic thickness gauge that was checked for calibration every morning and at mid-day.

EUREKA DRYDOCK

TABLE OF CONTENTS

- 1.0 TESTING ALONG THE 5 BELTS
- 2.0 TESTING ON THE APRON (locations provided by BAE)
- 3.0 TESTING LONG TRUSS (locations provided by BAE)
- 4.0 TESTING TRANSVERSE TRUSS (locations provided by BAE)
- 5.0 TESTING BOTTOM CHORD (locations provided by BAE)
- 6.0 CLEANING OF INTAKE & DISCHARGE SCREENS

1.0 TESTING ALONG THE 5 BELTS

East Wingwall Top Deck	Hit 1 is 4' 5" from outside edge of wall				
	ORIGINAL THICKNESS	PRESENT THICKNESS	CHANGE	CHANGE PERCENTAGE	
BELT 1 1	0.437	0.407	0.030	0.07	
	0.437	0.394	0.043	0.10	
BELT 2 1 2	0.437	0.380	0.057	0.13	
	0.437	0.375	0.062	0.14	
BELT 3 1	0.437	0.364	0.073	0.17	
2	0.437	0.446	-0.009	-0.02	
BELT 4 1 2	0.437	0.387	0.050	0.11	
	0.437	0.371	0.066	0.15	
BELT 5 1 2	0.437	0.446	-0.009	-0.02	
	0.437	0.450	-0.013	-0.03	

East Outside Wingwall Hit 1 is 3' down from top of wing wall

LOCATION	ORIGINAL THICKNESS	PRESENT THICKNESS	CHANGE	CHANGE PERCENTAGE
BELT 1 1	0.375	0.392	-0.017	-0.05
2	0.375	0.396	-0.021	-0.06
- 3	0.375	0.360	0.015	0.04
4	0.375	0.328	0.047	0.13
5	0.375	0.302	0.073	0.19
6	0.375	0.306	0.069	0.18
7	0.375	0.344	0.031	0.08
8	0.437	0.500	-0.063	-0.14
9	0.437	0.502	-0.065	-0.15
BELT 2 1	0.375	0.396	-0.021	-0.06
2	0.375	0.382	-0.007	-0.02
3	0.375	0.360	0.015	0.04
4	0.375	0.366	0.009	0.02
5	0.375	0.358	0.017	0.05
6	0.375	0.352	0.023	0.06
7	0.375	0.456	-0.081	-0.22
8	0.437	0.498	-0.061	-0.14
9	0.437	0.501	-0.064	-0.15
BELT 3 1	0.375	0.372	0.003	0.01
2	0.375	0.366	0.009	0.02
- 3	0.375	0.366	0.009	0.02
4	0.375	0.370	0.005	0.01
5	0.375	0.354	0.021	0.06
6	0.375	0.348	0.027	0.07
7	0.375	0.444	-0.069	-0.18
8	0.437	0.452	-0.015	-0.03
9	0.437	0.468	-0.031	-0.07

East Outside Wingwall ... Continued Hit 1 is 3' down from top of wing wall

LOCATION		ORIGINAL THICKNESS	PRESENT THICKNESS	CHANGE	CHANGE PERCENTAGE
BELT 4	1	0.375	0.394	-0.019	-0.05
BEET 4	2	0.375	0.352	0.023	0.06
	2	0.375	0.370	0.023	0.00
	4	0.375	0.380	-0.005	-0.01
	5	0.375	0.356	0.019	0.05
	6	0.375	0.360	0.015	0.04
	7	0.375	0.464	-0.089	-0.24
	8	0.437	0.498	-0.061	-0.14
	9	0.437	0.444	-0.007	-0.02
BELT 5	1	0.375	0.402	-0.027	-0.07
	2	0.375	0.364	0.011	0.03
	3	0.375	0.344	0.031	0.08
	4	0.375	0.366	0.009	0.02
	5	0.375	0.370	0.005	0.01
	6	0.375	0.380	-0.005	-0.01
	7	0.375	0.362	0.013	0.03
	8	0.437	0.446	-0.009	-0.02
	9	0.437	0.424	0.013	0.03

Bottom of dry dock

Hit 1 is 1' 6" from the east side

ORIGINAL	PRESENT		CHANGE
THICKNESS	THICKNESS	CHANGE	PERCENTAGE
			0.02
			0.05
			0.05
0.437	0.382	0.055	0.13
0.437	0.348	0.089	0.20
0.437	0.400	0.037	0.08
0.437	0.396	0.041	0.09
0.437	0.380	0.057	0.13
0.437	0.370	0.067	0.15
0.437	0.364	0.073	0.17
0.437	0.366	0.071	0.16
0.437	0.394	0.043	0.10
0.437	0.330	0.107	0.24
0.437	0.354	0.083	0.19
0.437	0.318	0.119	0.27
0.437	0.482	-0.045	-0.10
0.437	0.486	-0.049	-0.11
0.437	0.470	-0.033	-0.08
0.437	0.448	-0.011	-0.03
0.437	0.502	-0.065	-0.15
0.437	0.412	0.025	0.06
0.437	0.414	0.023	0.05
0.437	0.438	-0.001	0.00
0.437	0.426	0.011	0.03
	THICKNESS 0.437	THICKNESSTHICKNESS0.4370.4280.4370.4160.4370.4160.4370.3820.4370.3480.4370.3480.4370.3960.4370.3960.4370.3640.4370.3640.4370.3640.4370.3300.4370.3540.4370.3180.4370.4820.4370.4820.4370.4480.4370.4140.4370.4120.4370.4140.4370.438	THICKNESSTHICKNESSCHANGE0.4370.4280.0090.4370.4160.0210.4370.4160.0210.4370.3820.0550.4370.3480.0890.4370.3480.0890.4370.3960.0410.4370.3960.0410.4370.3640.0730.4370.3660.0710.4370.3660.0710.4370.3300.1070.4370.3540.0830.4370.3180.1190.4370.486-0.0450.4370.448-0.0110.4370.448-0.0110.4370.448-0.0110.4370.4120.0250.4370.4140.0230.4370.438-0.001

Bottom of dry dock......continued Hit 1 is 1' 6" from the east side

		ORIGINAL THICKNESS	PRESENT THICKNESS	CHANGE	CHANGE PERCENTAGE
BELT 2	1	0.437	0.422	0.015	0.03
	2	0.437	0.420	0.017	0.04
	3	0.437	0.412	0.025	0.06
	4	0.437	0.402	0.035	0.08
	5	0.437	0.416	0.021	0.05
	6	0.437	0.412	0.025	0.06
	7	0.437	0.418	0.019	0.04
	8	0.437	0.328	0.109	0.25
	9	0.437	0.358	0.079	0.18
	10	0.437	0.338	0.099	0.23
	11	0.437	0.404	0.033	0.08
	12	0.437	0.424	0.013	0.03
	13	0.437	0.398	0.039	0.09
	14	0.437	0.394	0.043	0.10
	15	0.437	0.380	0.057	0.13
	16	0.437	0.436	0.001	0.00
	17	0.437	0.380	0.057	0.13
	18	0.437	0.330	0.107	0.24
	19	0.437	0.426	0.011	0.03
	20	0.437	0.386	0.051	0.12
	21	0.437	0.496	-0.059	-0.14
	22	0.437	0.498	-0.061	-0.14
	23	0.437	0.388	0.049	0.11
	24	0.437	0.348	0.089	0.20
BELT 3	1	0.437	0.438	-0.001	0.00
	2	0.437	0.402	0.035	0.08
	3	0.437	0.412	0.025	0.06
	4	0.437	0.336	0.101	0.23
	5	0.437	0.384	0.053	0.12
	6	0.437	0.374	0.063	0.14
	7	0.437	0.374	0.063	0.14
	8	0.437	0.372	0.065	0.15
	9	0.437	0.396	0.041	0.09
	10	0.437	0.426	0.011	0.03
	11	0.437	0.386	0.051	0.12
	12	0.437	0.420	0.017	0.04
	13	0.437	0.382	0.055	0.13
	14	0.437	0.342	0.095	0.22
	15	0.437	0.410	0.027	0.06
	16	0.437	0.382	0.055	0.13
	17	0.437	0.410	0.027	0.06
	18	0.437	0.418	0.019	0.04
	19	0.437	0.408	0.029	0.07
:	20	0.437	0.414	0.023	0.05
:	21	0.437	0.480	-0.043	-0.10
:	22	0.437	0.480	-0.043	-0.10
:	23	0.437	0.482	-0.045	-0.10
	24	0.437	0.416	0.021	0.05

Bottom of dry dock......continued Hit 1 is 1' 6" from the east side

LOCATION		ORIGINAL THICKNESS	PRESENT THICKNESS	CHANGE	CHANGE PERCENTAGE
BELT 4 1	1	0.437	0.498	-0.061	-0.14
	2	0.437	0.478	-0.041	-0.09
	3	0.437	0.466	-0.029	-0.07
	4	0.437	0.386	0.051	0.12
	5	0.437	0.336	0.101	0.23
	6	0.437	0.374	0.063	0.14
	7	0.437	0.436	0.001	0.00
8		0.437	0.398	0.039	0.09
	9	0.437	0.396	0.041	0.09
	10	0.437	0.366	0.071	0.16
	11	0.437	0.388	0.049	0.11
	12	0.437	0.440	-0.003	-0.01
	13	0.437	0.396	0.041	0.09
	14	0.437	0.302	0.135	0.31
	15	0.437	0.328	0.109	0.25
	16	0.437	0.346	0.091	0.21
	17	0.437	0.422	0.015	0.03
	18	0.437	0.502	-0.065	-0.15
	19	0.437	0.398	0.039	0.09
	20	0.437	0.354	0.083	0.19
	21	0.437	0.392	0.045	0.10
	22	0.437	0.490	-0.053	-0.12
	23	0.437	0.492	-0.055	-0.13
	24	0.437	0.404	0.033	0.08
	4	0 427	0.214	0.422	0.29
BELT 5 1		0.437	0.314	0.123	0.28
	2	0.437	0.370	0.067	0.15
	3	0.437	0.374	0.063	0.14
	4	0.437	0.370	0.067	0.15
	5	0.437	0.312 0.340	0.125 0.097	0.29 0.22
6	5 7	0.437 0.437	0.340	0.055	0.22
	r B	0.437	0.382	0.035	0.13
	9	0.437	0.326	0.025	0.25
	9 10	0.437	0.384	0.053	0.25
	11	0.437	0.328	0.000	0.12
	12		0.302	0.135	0.23
		0.437			
	13 14	0.437 0.437	0.326 0.412	0.111 0.025	0.25 0.06
	14 15	0.437	0.352	0.025	0.19
	16	0.437	0.310	0.005	0.29
	10 17	0.437	0.368	0.127	0.29
		0.437	0.388	0.069	0.16
	18 19	0.437	0.330	0.107 0.047	0.24
	19 20		0.390	0.047	0.11
	20 21	0.437 0.437	0.372	0.065	0.15
	21 22	0.437	0.436	-0.005	-0.01
	23 24	0.437	0.442 0.448	-0.005 -0.011	-0.01
2	24	0.437	0.448	-0.011	-0.03

		ORIGINAL THICKNESS	PRESENT THICKNESS	CHANGE	CHANGE PERCENTAGE
BELT 1	1	0.437	0.504	-0.067	-0.15
	2	0.437	0.235	0.202	0.46
BELT 2	1	0.437	0.488	-0.051	-0.12
	2	0.437	0.343	0.094	0.22
BELT 3	1	0.437	0.366	0.071	0.16
:	2	0.437	0.448	-0.011	-0.03
BELT 4	1	0.437	0.478	-0.041	-0.09
	2	0.437	0.434	0.003	0.01
BELT 5	1	0.437	0.455	-0.018	-0.04
:	2	0.437	0.438	-0.001	0.00

 West Outside Wingwall
 Hit 1 is 3' down from top of wing wall

LOCATION	ORIGINAL THICKNESS	PRESENT THICKNESS	CHANGE	CHANGE PERCENTAGE
	0.075	0.005	0.010	0.00
BELT 1 1		0.385	-0.010	-0.03
2		0.385	-0.010	-0.03
3		0.345	0.030	0.08
4		0.340	0.035	0.09
5		0.305	0.070	0.19
6		0.495	-0.120	-0.32
7		0.505	-0.130	-0.35
8		0.505	-0.068	-0.16
9	0.437	0.466	-0.029	-0.07
	0.075	0.000	0.005	0.01
BELT 2 1		0.380	-0.005	-0.01
2		0.375	0.000	0.00
3		0.335	0.040	0.11
4		0.320	0.055	0.15
5		0.285	0.090	0.24
6		0.350	0.025	0.07
7		0.428	-0.053	-0.14
8		0.568	-0.131	-0.30
9	0.437	0.530	-0.093	-0.21
	0.075	0.075	0.000	0.00
BELT 3 1		0.375	0.000	0.00
2		0.365	0.010	0.03
3		0.370	0.005	0.01
4		0.375	0.000	0.00
5		0.315	0.060	0.16
6		0.330	0.045	0.12
7		0.543	-0.168	-0.45
8		0.576	-0.139	-0.32
9	0.437	0.520	-0.083	-0.19

West Outside Wingwall ... Continued

Hit 1 is 3' down from top of wing wall

LOCATION		ORIGINAL THICKNESS	PRESENT THICKNESS	CHANGE	CHANGE PERCENTAGE
BELT 4	1	0.375	0.380	-0.005	-0.01
DELT 4	2	0.375	0.395	-0.020	-0.05
	2	0.375	0.395	0.000	0.00
	4	0.375	0.350	0.025	0.07
	5	0.375	0.335	0.040	0.11
	6	0.375	0.315	0.060	0.16
	7	0.375	0.555	-0.180	-0.48
	8	0.437	0.533	-0.096	-0.22
	9	0.437	0.483	-0.046	-0.11
BELT 5	1	0.375	0.390	-0.015	-0.04
	2	0.375	0.360	0.015	0.04
	3	0.375	0.370	0.005	0.01
	4	0.375	0.390	-0.015	-0.04
	5	0.375	0.370	0.005	0.01
	6	0.375	0.360	0.015	0.04
	7	0.375	0.597	-0.222	-0.59
	8	0.437	0.576	-0.139	-0.32
	9	0.437	0.584	-0.147	-0.34

West Inside Wingwall

Hit 1 is 3' down from top of wing wall

LOCATION	ORIGINAL THICKNESS	PRESENT THICKNESS	CHANGE	CHANGE PERCENTAGE
BELT 1 1	0.375	0.440	-0.065	-0.17
2	0.375	0.434	-0.059	-0.16
3	0.375	0.393	-0.018	-0.05
4	0.375	0.424	-0.049	-0.13
5	0.375	0.410	-0.035	-0.09
6	0.375	0.421	-0.046	-0.12
7	0.375	0.410	-0.035	-0.09
BELT 2 1	0.375	0.452	-0.077	-0.21
2	0.375	0.457	-0.082	-0.22
3	0.375	0.403	-0.028	-0.07
4	0.375	0.480	-0.105	-0.28
5	0.375	0.449	-0.074	-0.20
6	0.375	0.425	-0.050	-0.13
7	0.375	0.420	-0.045	-0.12
BELT 3 1	0.375	0.406	-0.031	-0.08
2	0.375	0.420	-0.045	-0.12
3	0.375	0.377	-0.002	-0.01
4	0.375	0.442	-0.067	-0.18
5	0.375	0.406	-0.031	-0.08
6	0.375	0.414	-0.039	-0.10
7	0.375	0.407	-0.032	-0.09

West Inside Wingwall ... Continued

Hit 1 is 3' down from top of wing wall

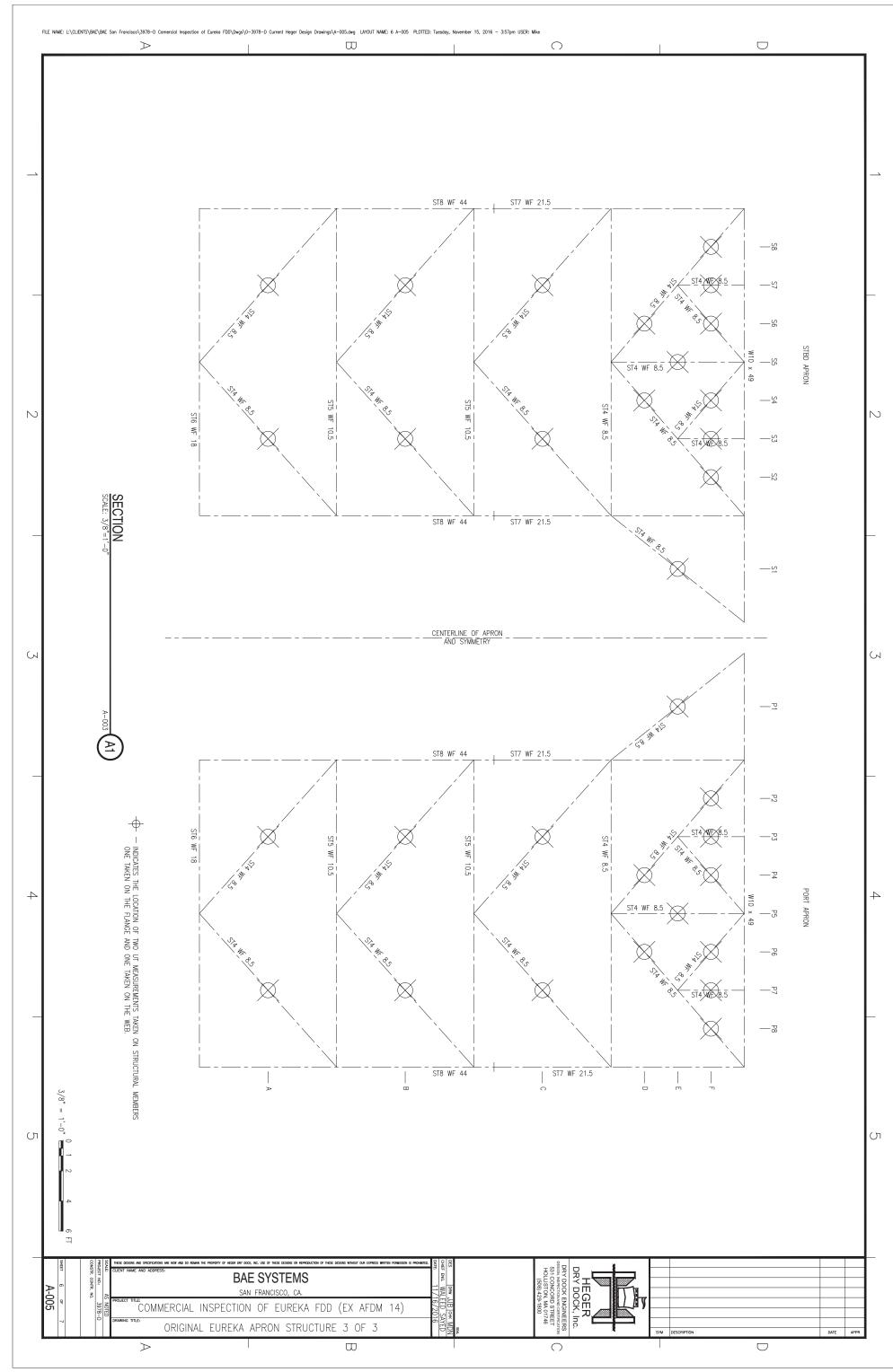
LOCATION		ORIGINAL THICKNESS	PRESENT THICKNESS	CHANGE	CHANGE PERCENTAGE
BELT 4	1	0.375	0.400	-0.025	-0.07
	2	0.375	0.434	-0.059	-0.16
	3	0.375	0.433	-0.058	-0.15
	4	0.375	0.426	-0.051	-0.14
	5	0.375	0.383	-0.008	-0.02
	6	0.375	0.372	0.003	0.01
	7	0.375	0.415	-0.040	-0.11
BELT 5	1	0.375	0.433	-0.058	-0.15
	2	0.375	0.461	-0.086	-0.23
	3	0.375	0.436	-0.061	-0.16
	4	0.375	0.430	-0.055	-0.15
	5	0.375	0.445	-0.070	-0.19
	6	0.375	0.438	-0.063	-0.17
	7	0.375	0.420	-0.045	-0.12

 East Inside Wingwall
 Hit 1 is 3' down from top of wing wall

LOCATION	ORIGINAL THICKNESS	PRESENT THICKNESS	CHANGE	CHANGE PERCENTAGE
BELT 1 1	0.375	0.485	-0.110	-0.29
2	0.375	0.446	-0.071	-0.19
3	0.375	0.363	0.012	0.03
4	0.375	0.420	-0.045	-0.12
5	0.375	0.385	-0.010	-0.03
6	0.375	0.368	0.007	0.02
7	0.375	0.454	-0.079	-0.21
BELT 2 1	0.375	0.450	-0.075	-0.20
2	0.375	0.444	-0.069	-0.18
3	0.375	0.361	0.014	0.04
4	0.375	0.461	-0.086	-0.23
5	0.375	0.313	0.062	0.17
6	0.375	0.441	-0.066	-0.18
7	0.375	0.422	-0.047	-0.13
BELT 3 1	0.375	0.462	-0.087	-0.23
2	0.375	0.430	-0.055	-0.15
3	0.375	0.327	0.048	0.13
4	0.375	0.461	-0.086	-0.23
5	0.375	0.432	-0.057	-0.15
6	0.375	0.427	-0.052	-0.14
7	0.375	0.348	0.027	0.07
BELT 4 1	0.375	0.464	-0.089	-0.24
2	0.375	0.434	-0.059	-0.16
3	0.375	0.448	-0.073	-0.19
4	0.375	0.455	-0.080	-0.21
5	0.375	0.420	-0.045	-0.12
6	0.375	0.445	-0.070	-0.19
7	0.375	0.454	-0.079	-0.21
BELT 5 1	0.375	0.422	-0.047	-0.13
2	0.375	0.444	-0.069	-0.18
3	0.375	0.455	-0.080	-0.21
4	0.375	0.482	-0.107	-0.29
5	0.375	0.451	-0.076	-0.20
6	0.375	0.445	-0.070	-0.19
7	0.375	0.420	-0.045	-0.12

2.0 TESTING ON THE APRON

All testing locations for thickness were provided by BAE. Original thickness was not provided.


			ſ	
I				UT
S	3	А	Web	0.542
S	3	В	Flange	0.485
S	3	С	Web	0.531
S	3	D	Flange	0.517
S	2	А	Web	0.497
S	2	В	Flange	0.217
S	2	С	Web	0.502
S	2	D	Flange	0.551
S	1	А	Web	0.505
S	1	В	Flange	0.568
S	1	С	Web	0.596
S	1	D	Flange	0.587
С	L	А	Web	0.385
С	L	В	Flange	0.389
С	L	С	Web	0.289
С	L	D	Flange	0.336

APRON DECK

				UT
Р	1	А	Web	0.55
Р	1	В	Flange	0.545
Р	1	С	Web	0.592
Р	1	D	Flange	0.581
Р	2	А	Web	0.553
Р	2	В	Flange	0.502
Р	2	С	Web	0.494
Р	2	D	Flange	0.49
Р	3	А	Web	0.529
Р	3	В	Flange	0.543
Р	3	С	Web	0.552
Р	3	D	Flange	0.427

SEE A1 on Sheet A-005

SEE A1 on Sheet A-005

3.0 TESTING LONG TRUSS (locations provided by BAE

STBD - OUTOARD - MAIN TRUSS

STBD - INBOARD - MAIN TRUSS

STBD - INBOARD - W10x21

	UT
A 1 Web	0.412
A 1 Flange	0.462
A 2 Web	0.36
A 2 Flange	0.517
A 3 Web	0.575
A 3 Flange	0.876
B 1 Web	0.356
B 1 Flange	0.496
B 2 Web	0.403
B 2 Flange	0.589
B 3 Web	0.547
B 3 Flange	0.859
C 1 Web	0.359
C 1 Flange C 2 Web	0.485
C 2 Web	0.363
C 2 Flange	0.471
C 3 Web	0.377
C 3 Flange	0.58
D 1 Web	0.344
D 1 Flange	0.477
D 2 Web	0.345
D 2 Flange	0.576

			UT		
А	1	Web	0.4		
А	1	Flange	0.5		
А	2	Web	0.4		
А	2	Flange	0.5		
А	3	Web	0.6		
А	3	Flange	0.4		
В	1	Web	0.3		
В	1	Flange	0.3		
В	2	Web	0.3		
В	2	Flange	0.4		
В	3	Web	0.6		
В	3	Flange	0.9		
С	1	Web	0.3		
С	1	Flange	0.4		
		Web	0.3		
С	2	Flange Web	0.4		
С	3	Web	0.3		
С	3	Flange	0.6		
D		Web	0.4		
D	1	Flange	0.4		
D	2	Web	0.3		
D	2	Flange	0.6		
A5 on Sheet A-003					

SIDD - INDOARD - WID					
		UT			
А	Web	0.285			
	Flange	0.359			
В	Web	0.308			
	Flange	0.36			
С	Web	0.378			
	Flange	0.298			
D	Web	0.305			
D	Flange	0.325			

SEE B1 on Sheet A-003

STBD - FWD - W10x49					
	UT				
S2 Web	0.311				
Flange	0.205				
S1 Web	0.316				
Flange	0.387				

SEE B1 on Sheet A-003

SEE A5 on Sheet A-003

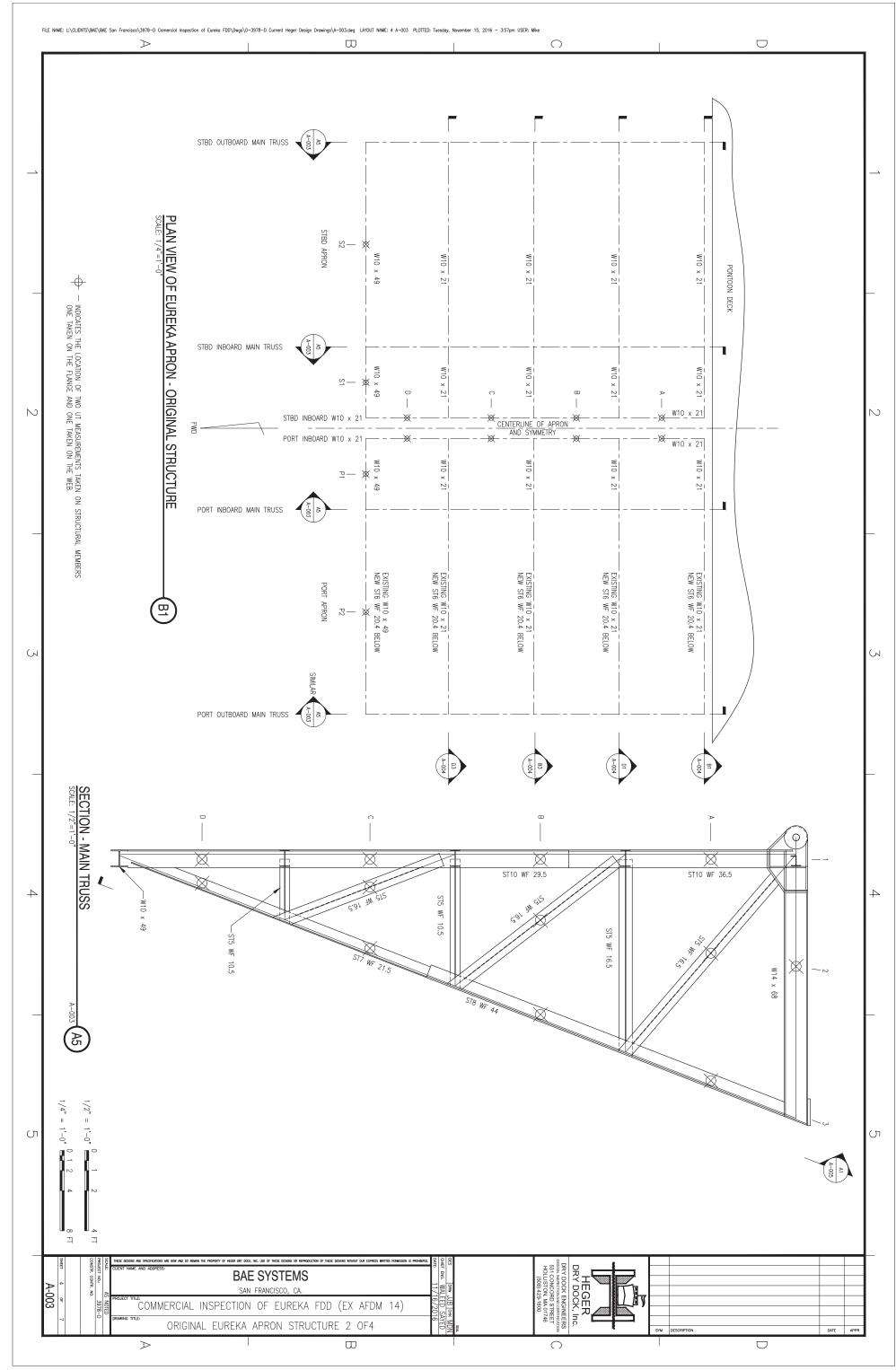
SEE A5 on Sheet A-003

PORT - INBOARD - W10x21

		UT	
А	Web	0.317	
	Flange	0.377	
В	Web	0.32	
	Flange	0.377	
С	Web	0.316	
	Flange	0.401	
D	Web	0.317	
D	Flange	0.297	

SEE B1 on Sheet A-003

PORT - FWD - W10x49					
	UT				
P1 Web	0.335				
Flange	0.163				
P2 Web	0.333				
Flange	0.347				
P2 Web	/				
Flange					


SEE B1 on Sheet A-003

			INDOAND
			UT
А	1	Web	0.387
А	1	Flange	0.461
А	2	Web	0.281
А	2	Flange	0.479
А	3	Web	0.623
А	3	Flange	0.875
В	1	Web	0.325
В	1	Flange	0.283
В	2	Web	0.279
В	2	Flange	0.466
В	3	Web	0.563
В	3	Flange	0.89
С	1	Web	0.351
С	1	Flange	0.323
С	2	Web	0.344
С	2	Flange	0.463
С	3	Web	0.378
С	3	Flange	0.582
D	1	Web	0.334
D	1	Flange	0.296
D	2	Web	0.375
D	2	Flange	0.553

PORT	OUTBOAR	D - MAIN TRUSS
	UT	
A 1 Web	0.388	
A 1 Flange	0.447	
A 2 Web	0.357	
A 2 Flange	0.506	
A 3 Web	0.604	
A 3 Flange	0.852	
B 1 Web	0.339	
B 1 Flange	0.25	
B 2 Web	0.294	
B 2 Flange	0.464	
B 3 Web	0.56	
B 3 Flange	0.881	
C 1 Web	0.291	
C 1 Flange	0.307	
C 2 Web	0.296	
C 2 Flange	0.465	
C 3 Web	0.368	
C 3 Flange	0.617	
D 1 Web	0.346	
D 1 Flange	0.377	
D 2 Web	0.371	
D 2 Flange	0.595	

SEE A5 on Sheet A-003

PORT - INBOARD - MAIN TRUSS

1st	Transverse	Truss

				UT	
S	6	С	Web	0.483	
S	6	С	Flange	0.742	
S	5	А	Web	0.314	
S	5	А	Flange	0.304	
S	5	С	Web	0.314	
S	5	С	Flange	0.58	
S	5	D	Web	0.386	
S	5	D	Flange	0.423	
S	4	С	Web	0.338	
S	4	С	Flange	0.526	
S	3	А	Web	0.311	
S	3	А	Flange	0.325	
S	3	С	Web	0.362	
S	3	С	Flange	0.526	
S	3	D	Web	0.364	
S	3	D	Flange	0.401	
S	2	С	Web	0.486	
S	2	С	Flange	0.723	
S	1	А	Web	0.319	
S S	1	А	Flange	0.261	
S	1	С	Web	0.31	
S	1	С	Flange	0.471	
SEE B1 on Sheet A-004					

г

SS				
				UT
Ρ	1	Α	Web	0.334
Ρ	1	А	Flange	0.255
Ρ	1	С	Web	0.393
Ρ	1	С	Flange	0.637
Р	2	С	Web	0.505
Ρ	2	С	Flange	0.806
Р	3	Α	Web	0.325
Ρ	3	А	Flange	0.231
Ρ	3	В	Web	0.247
Ρ	3	В	Flange	0.54
Ρ	3	С	Web	0.391
Ρ	3	С	Flange	0.583
Ρ	3	D	Web	0.337
Ρ	3	D	Flange	0.414
Ρ	4	С	Web	0.379
Ρ	4	С	Flange	0.566
Ρ	5	А	Web	0.306
Ρ	5	А	Flange	0.388
Р	5	В	Web	0.32
Ρ	5	В	Flange	0.526
Р	5	С	Web	0.42
Ρ	5	С	Flange	0.693
Р	5	D	Web	0.354
Р	5	D	Flange	0.436
Ρ	6	С	Web	0.507
Ρ	6	С	Flange	0.797
Ч	6	C	Flange	0.797

SEE B1 on Sheet A-004

2nd Transverse Truss

				UT
S	6	С	Web	0.285
S	6	С	Flange	0.52
S	5	А	Web	0.318
S	5	А	Flange	0.138
S	5	С	Web	0.209
S	5	С	Flange	0.353
S	5	D	Web	0.376
S	5	D	Flange	0.404
S	4	С	Web	0.233
S	4	С	Flange	0.366
S	3	А	Web	0.305
S	3	А	Flange	0.263
S	3	С	Web	0.29
S	3	С	Flange	0.375
S	3	D	Web	0.365
S	3	D	Flange	0.402
S	2	С	Web	0.377
S	2	С	Flange	0.604
S	1	А	Web	0.33
S	1	Α	Flange	0.359
S	1	С	Web	0.262
S	1	С	Flange	0.321

r

SEE D1 on Sheet A-004

ru	ISS				
					UT
	Ρ	1	А	Web	0.315
	Ρ	1	А	Flange	0.319
	Ρ	1	С	Web	0.304
	Ρ	1	С	Flange	0.457
	Ρ	2	С	Web	0.356
	Ρ	2	С	Flange	0.504
	Ρ	3	А	Web	0.321
	Ρ	3	А	Flange	0.408
	Ρ	3	В	Web	0.133
	Ρ	3	В	Flange	0.55
	Ρ	3	С	Web	0.204
	Ρ	3	С	Flange	0.37
	Ρ	3	D	Web	0.335
	Ρ	3	D	Flange	0.391
	Ρ	4	С	Web	0.301
	Ρ	4	С	Flange	0.369
	Ρ	5	А	Web	0.33
	Ρ	5	А	Flange	0.358
	Ρ	5	В	Web	0.37
	Ρ	5	В	Flange	0.51
	Ρ	5	С	Web	0.328
	Ρ	5	С	Flange	0.328
	Ρ	5	D	Web	0.354
	Ρ	5	D	Flange	0.421
	Ρ	6	С	Web	0.339
	Ρ	6	С	Flange	0.585

SEE D1 on Sheet A-004

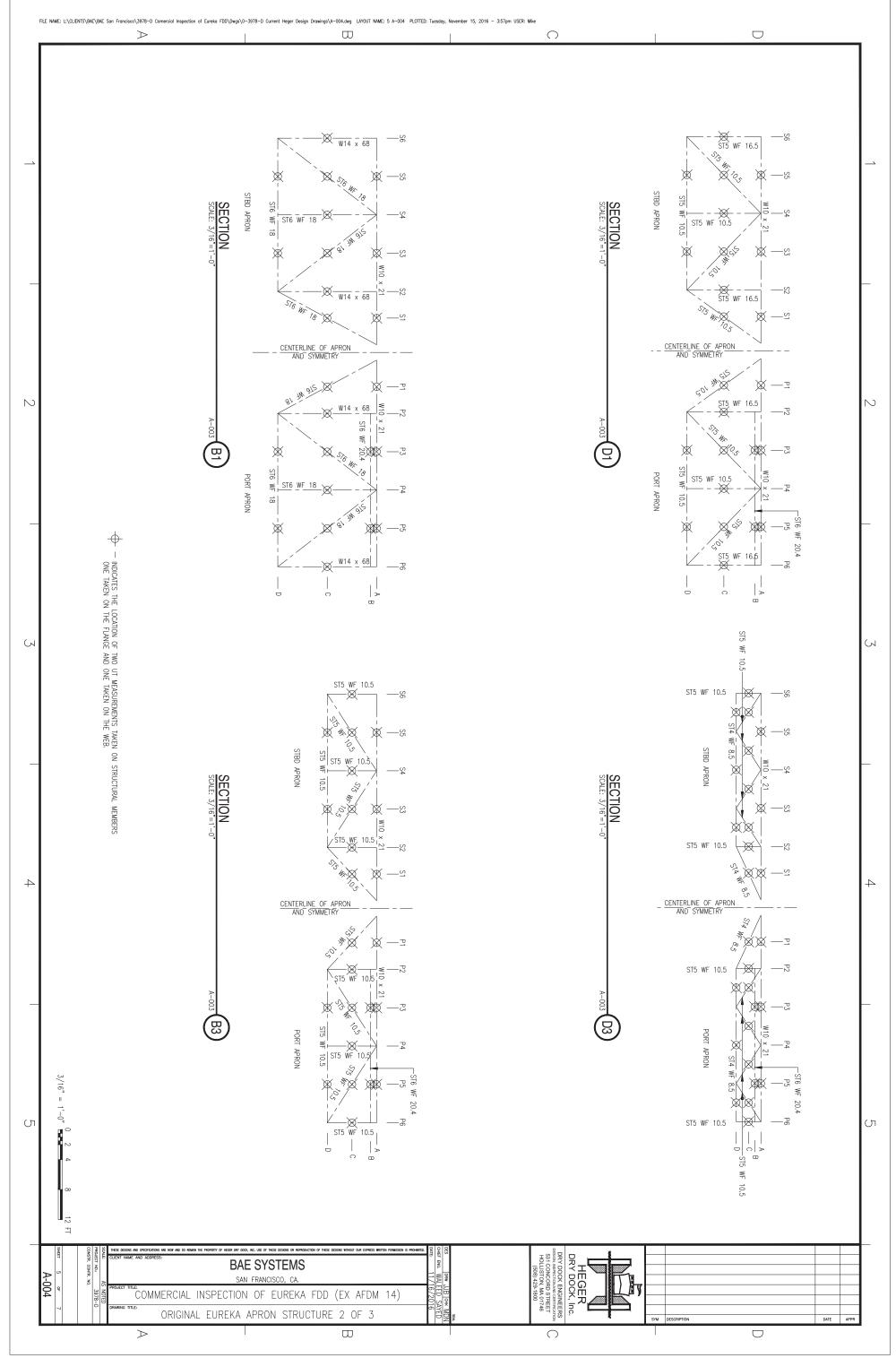
				UT
S	6	С	Web	0.353
S	6	С	Flange	0.613
S	5	А	Web	0.317
S	5	А	Flange	0.237
S	5	С	Web	0.28
S	5	С	Flange	0.381
S	5	D	Web	0.278
S	5	D	Flange	0.325
S	4	С	Web	0.27
S	4	С	Flange	0.439
S	3	А	Web	0.314
S	3	А	Flange	0.162
S	3	С	Web	0.295
S	3	С	Flange	0.352
S	3	D	Web	0.294
S	3	D	Flange	0.358
S	2	С	Web	0.313
S S	2	С	Flange	0.46
S	1	А	Web	0.306
S	1	А	Flange	0.221
S	1	С	Web	0.276
S	1	С	Flange	0.379

3rd Transverse Truss

SEE B3 on Sheet A-004

				UT
Ρ	1	А	Web	0.334
Ρ	1	А	Flange	0.152
Ρ	1	С	Web	0.302
Ρ	1	С	Flange	0.394
Ρ	2	С	Web	0.363
Ρ	2	С	Flange	0.469
Ρ	3	А	Web	0.341
Ρ	3	А	Flange	0.207
Ρ	3	В	Web	0.385
Ρ	3	В	Flange	0.52
Р	3	С	Web	0.355
Ρ	3	С	Flange	0.381
Ρ	3	D	Web	0.245
Ρ	3	D	Flange	0.38
Ρ	4	С	Web	0.331
Ρ	4	С	Flange	0.414
Ρ	5	А	Web	0.355
Ρ	5	А	Flange	0.311
Ρ	5	В	Web	0.339
Ρ	5	В	Flange	0.461
Ρ	5	С	Web	0.23
Ρ	5	С	Flange	0.37
Р	5	D	Web	0.252
Ρ	5	D	Flange	0.378
Ρ	6	С	Web	0.359
Р	6	С	Flange	0.49

SEE B3 on Sheet A-004

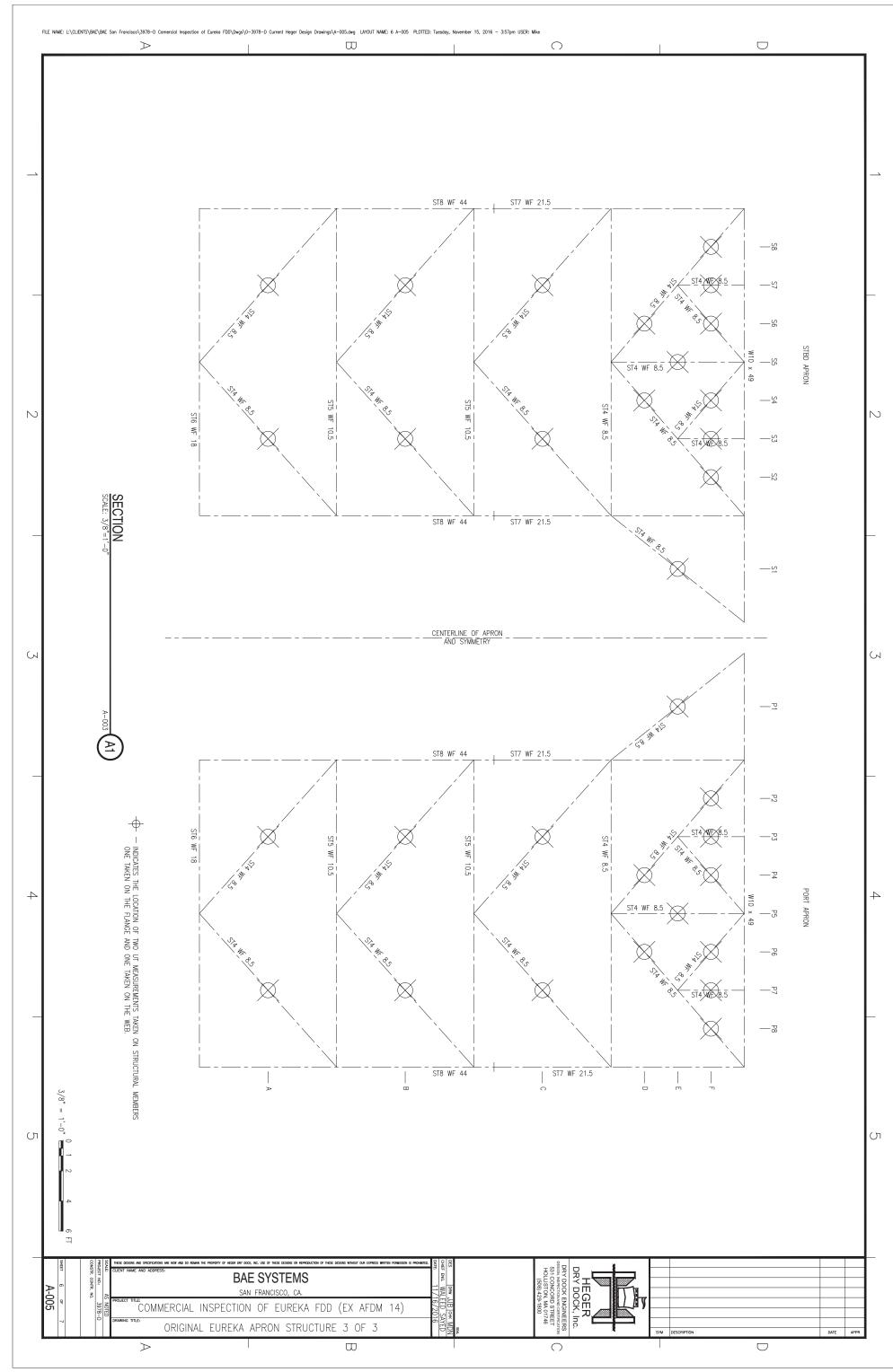

4th	Transverse	Truss
1		

				UT
S	6	С	Web	0.33
S	6	С	Flange	0.297
S	5.5	С	Web	0.29
S	5.5	С	Flange	0.335
S	5.5	D	Web	0.282
S S	5.5	D	Flange	0.328
S	5	А	Web	0.327
S	5	А	Flange	0.342
S	4.5	С	Web	0.286
S S	4.5	С	Flange	0.326
S	4	D	Web	0.342
S	4	D	Flange	0.297
S	3.5	С	Web	0.264
S	3.5	С	Flange	0.354
S	3	А	Web	0.311
S	3	А	Flange	0.385
S	2.5	С	Web	0.293
S	2.5	С	Flange	0.333
S	2.5	D	Web	0.323
S	2.5	D	Flange	0.355
S	2	С	Web	0.356
S	2	С	Flange	0.525
S	1	А	Web	0.301
S S	1	А	Flange	0.235
S	1	С	Web	0.298
S	1	С	Flange	0.351

Г

				UT
Ρ	1	А	Web	0.338
Ρ	1	А	Flange	0.356
Ρ	1	С	Web	0.23
Ρ	1	С	Flange	0.335
Р	2	С	Web	0.342
Ρ	2	С	Flange	0.584
Ρ	2.5	С	Web	0.302
Ρ	2.5	С	Flange	0.337
Ρ	2.5	D	Web	0.254
Ρ	2.5	D	Flange	0.36
Ρ	3	А	Web	0.336
Ρ	3	А	Flange	0.305
Ρ	3	В	Web	0.148
Ρ	3	В	Flange	0.551
Ρ	3.5	С	Web	0.259
Ρ	3.5	С	Flange	0.338
Ρ	4	D	Web	0.286
Ρ	4	D	Flange	0.367
Ρ	4.5	С	Web	0.27
Ρ	4.5	С	Flange	0.369
Ρ	5	А	Web	0.367
Ρ	5	А	Flange	0.37
Ρ	5	В	Web	0.153
Ρ	5	В	Flange	0.487
Ρ	5.5	С	Web	0.273
Ρ	5.5	С	Flange	0.342
Ρ	5.5	D	Web	0.29
Ρ	5.5	D	Flange	0.364
	6	С	Web	0.346
Ρ	0	-		

SEE B3 on Sheet A-004

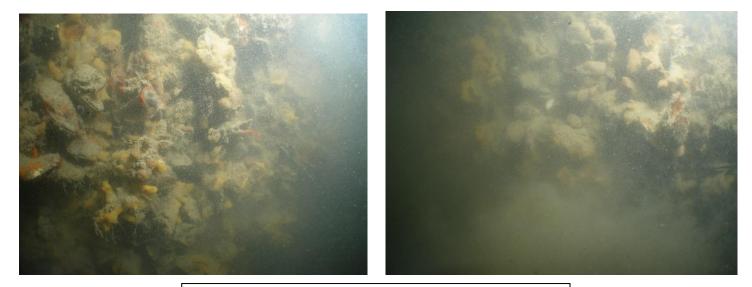

BOTTOM CHORD

				UT
S	8	F	Web	0.316
S	8	F	Flange	0.27
S	7	F	Web	0.342
S	7	F	Flange	0.293
S	7	С	Web	0.361
S S	7	С	Flange	0.307
	7	В	Web	0.363
S S	7	В	Flange	0.318
	7	А	Web	0.319
S S	7	А	Flange	0.37
S	6	F	Web	0.307
S S	6	F	Flange	0.275
	6	D	Web	0.285
S S	6	D	Flange	0.271
S	5	Ε	Web	0.313
S	5	Е	Flange	0.294
S S	4	F	Web	0.266
S S	4	F	Flange	0.243
S	3	F	Web	0.332
S S	3	F	Flange	0.278
S	3	С	Web	0.298
S S	3	С	Flange	0.296
S	3	В	Web	0.387
S S S	3	В	Flange	0.311
S	2	А	Web	0.351
S	2	А	Flange	0.382
S	1	Е	Web	0.307
S	1	Е	Flange	0.286
	2	F	Web	0.311
S S S	2	F	Flange	0.284
S	4	D	Web	0.313
S	4	D	Flange	0.265
	СГГ		-	A 00F

SEE A1 on Sheet A-005

				UT	
Ρ	8	F	Web	0.302	
Ρ	8	F	Flange	0.356	
Р	7	F	Web	0.278	
Ρ	7	F	Flange	0.29	
Ρ	7	С	Web	0.327	
Ρ	7	С	Flange	0.36	
Р	7	В	Web	0.326	
Ρ	7	В	Flange	0.289	
Р	7	А	Web	0.314	
Ρ	7	А	Flange	0.382	
Р	6	F	Web	0.318	
Ρ	6	F	Flange	0.226	
Р	6	D	Web	0.313	
Ρ	6	D	Flange	0.372	
Р	5	Е	Web	0.288	
Ρ	5	Е	Flange	0.304	
Ρ	4	F	Web	0.273	
Ρ	4	F	Flange	0.301	
Р	3	D	Web	0.313	
Ρ	3	D	Flange	0.384	
Ρ	3	F	Web	0.282	
Ρ	3	F	Flange	0.258	
Ρ	3	С	Web	0.316	
Ρ	3	С	Flange	0.305	
Ρ	3	В	Web	0.355	
Ρ	3	В	Flange	0.315	
Р	1	Е	Web	0.327	
Ρ	1	Е	Flange	0.359	
Ρ	2	F	Web	0.287	
Ρ	2	F	Flange	0.229	
Ρ	4	D	Web	0.312	
Ρ	4	D	Flange	0.306	
SEE A1 on Sheet A-005					

SEE A1 on Sheet A-005


6.0 CLEANING OF INTAKE & DISCHARGE SCREENS

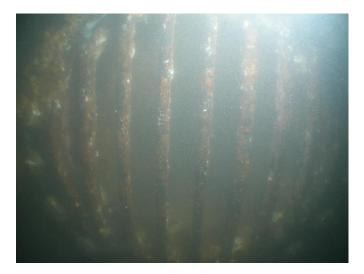
METHOD

A dive crew consisting of 3 men, with surface supplied air diving equipment and using a low-pressure diving compressor will send a diver in the water with surface to diver communications to pressure wash the intake/discharge screens on the Eureka dry dock with a 5000 PSI pressure washer to remove the soft and hard growth from the screens. The diver will inspect and report his findings on the screens.

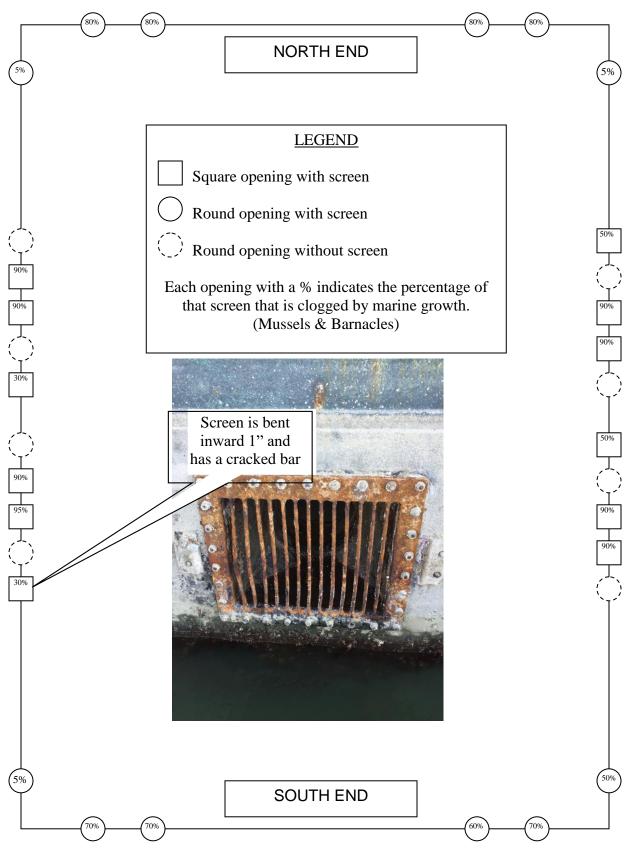
DIVERS FINDINGS

The dive crew cleaned the screens. The screens had mostly hard growth and were clogged up to 90%. All the screens were pressure washed and the marine growth was removed.




Typical condition of a screen (90% clogged with marine growth)

Diver checked each screen again after cleaning and found one screen that has a bent bar which is identified in *Drawing B*. All other screens are securely fastened to dry dock and in good condition. Below are pictures of a few screens which are typical of all screens after cleaning.



Two discharge screen pictures below are "typical" of all discharge screens

Two intake screen pictures below are "typical" of all intake screens

END OF REPORT

Appendix C – Ultrasonic Thickness Measurements

Belt	Location	Original Thickness	March 2017 Thickness
1		Hull Cuto	
	1	0.437	0.370
	2	0.437	0.510
	3	0.437	0.440
	4	0.437	0.440
	5	0.437	0.365
	6	0.437	0.315
	7	0.437	0.500
	8	0.437	0.495
	9	0.437	0.370
	10	0.437	0.770
	11	0.437	0.765
	12	0.437	0.770
	13	0.437	0.370
	14	0.437	0.375
	15	0.437	0.385
	16	0.437	0.365
	17	0.437	0.390
	18	0.437	0.370
	19	0.437	0.415
	20	0.437	0.365
	21	0.437	0.355
	22	0.437	0.440
	23	0.437	0.410
		Hull Cuto	ut

Average Distance Between Measurements =	5'-2"
Max < 0.437 in. =	0.415
Min =	0.315

Notes:

¹ Hit 1 is on East Side of hull

² Hits 1 and 23 are 1 foot in towards keel from inside face of hull cut out

³ Above water UT gauge reading taken on ceiling of hull cut out 1 foot in from west pontoon face = 0.390 in.

Belt	Location	Original Thickness	March 2017 Thickness
2	1		
	1	0.437	0.405
	2	0.437	0.325
	3	0.437	0.380
	4	0.437	0.480
	5	0.437	0.490
	6	0.437	0.365
	7	0.437	0.365
	8	0.437	0.325
	9	0.437	0.400
	10	0.437	0.415
	11	0.437	0.360
	12	0.437	0.420
	13	0.437	0.410
	14	0.437	0.415
	15	0.437	0.430
	16	0.437	0.375
	17	0.437	0.365
	18	0.437	0.385
	19	0.437	0.385
	20	0.437	0.385
	21	0.437	0.395
	22	0.437	0.400
	23	0.437	0.395
	24	0.437	0.415
	25	0.437	0.415
	26	0.437	0.405
	27	0.437	0.400
	28	0.437	0.365
	29	0.437	0.375
	30	0.437	0.380
	31	0.437	0.415
	32	0.437	0.405

Average Distance	
Between	
Measurements =	3'-8"
Max < 0.437 in. =	0.430
Min =	0.325

Notes:

1 Hit 1 is on East Side of hull

2 Hits 1 and 32 are 1 foot in from outer hull corner towards the hull kee

Belt	Location	Original Thickness	March 2017 Thickness
3	1	0.437	0.465
	2	0.437	0.470
	3	0.437	0.390
	4	0.437	0.365
	5	0.437	0.395
	6	0.437	0.382
	7	0.437	0.410
	8	0.437	0.405
	9	0.437	0.470
	10	0.437	0.375
	10	0.437	0.390
	12	0.437	0.395
	12		0.395
	13	0.437	0.395
		0.437	
	15	0.437	0.405
	16	0.437	0.450
	17	0.437	0.490
	18	0.437	0.445
	19	0.437	0.420
	20	0.437	0.380
	21	0.437	0.385
	22	0.437	0.375
	23	0.437	0.350
	24	0.437	0.375
	25	0.437	0.405
	26	0.437	0.350
	27	0.437	0.385
	28	0.437	0.355
	29	0.437	0.345
	30	0.437	0.450
	31	0.437	0.505
	32	0.437	0.390
	33	0.437	0.390
	34	0.437	0.350

Average Distance Between Measurements =	3'-6"
Max < 0.437 in. =	0.420
Min =	0.345

Notes:

1 Hit 1 is on East Side of hull

2 Hits 1 and 34 are 1 foot in from outer hull corner towards the hull kee

Belt	Location	Original Thickness	March 2017 Thickness
4	Hull Cutout		
	1	0.437	0.385
	2	0.437	0.395
	3	0.437	0.430
	4	0.437	0.380
	5	0.437	0.305
	6	0.437	0.370
	7	0.437	0.370
	8	0.437	0.495
	9	0.437	0.500
	10	0.437	0.385
	11	0.437	0.435
	12	0.437	0.355
	13	0.437	0.380
	14	0.437	0.365
	15	0.437	0.415
	16	0.437	0.410
	17	0.437	0.425
	18	0.437	0.420
	19	0.437	0.430
	20	0.437	0.420
	21	0.437	0.310
	22	0.437	0.385
	Hull Cutout		

Average Distance Between Measurements =	4'-6"
Max < 0.437 in. =	0.430
Min =	0.305

Notes:

¹ Hit 1 is on East Side of hull

² Hits 1 and 22 are 1 foot in towards keel from inside face of hull cut out

³ Above water UT gauge reading taken on ceiling of hull cut out 1 foot in from west pontoon face = 0.455 in.

Location	Original Thickness	March 2017 Thickness
1	0.437	0.435
2	0.437	0.445
3	0.437	0.435
4	0.437	0.440
5	0.437	0.445
6	0.437	0.430
7	0.437	0.435
8	0.437	0.395
9	0.437	0.410
10	0.437	0.415
11	0.437	0.430
12	0.437	0.390
13	0.437	0.385
14	0.437	0.425
15	0.437	0.410
16	0.437	0.425
17	0.437	0.405
18	0.437	0.395
19	0.437	0.400
20	0.437	0.420
21	0.437	0.425
22	0.437	0.395
23	0.437	0.345
24	0.437	0.345
25	0.437	0.385
26	0.437	0.325
27	0.437	0.325
28	0.437	0.320
29	0.437	0.330
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 13 14 15 16 17 18 19 20 21 22 23 24 22 23 24 22 23 24 25 26 27 28	Location Thickness 1 0.437 2 0.437 3 0.437 3 0.437 4 0.437 5 0.437 6 0.437 6 0.437 7 0.437 6 0.437 7 0.437 8 0.437 9 0.437 10 0.437 11 0.437 12 0.437 13 0.437 14 0.437 15 0.437 16 0.437 17 0.437 18 0.437 19 0.437 20 0.437 21 0.437 22 0.437 23 0.437 24 0.437 25 0.437 26 0.437 27 0.437 28 0.437

1 Hit 1 is on East Side of hull

2 Hits 1 and 29 are 1 foot in from outer hull corner towards the hull keel

Average Distance Between

Measurements =

Max < 0.437 in. =

Min =

4'-0"

0.435

0.320

Belt	Location	Original Thickness	March 2017 Thickness
6	1	0.437	0.425
	2	0.437	0.445
	3	0.437	0.425
	4	0.437	0.395
	5	0.437	0.950
	6	0.437	0.400
	7	0.437	0.385
	8	0.437	0.445
	9	0.437	0.450
	10	0.437	0.425
	11	0.437	0.420
	12	0.437	0.415
	13	0.437	0.405
	14	0.437	0.435
	15	0.437	0.430
	16	0.437	0.425
	17	0.437	0.430
	18	0.437	0.425
	19	0.437	0.425
	20	0.437	0.420
	21	0.437	0.430
	22	0.437	0.445
	23	0.437	0.435
	24	0.437	0.435
	25	0.437	0.430
	26	0.437	0.425
	27	0.437	0.425

Average Distance Between Measurements =	4'-4"
Max < 0.437 in. =	0.435
Min =	0.385

Notes:

1 Hit 1 is on East Side of hull

2 Hits 1 and 27 are 1 foot in from outer hull corner towards the hull keel

Appendix D – **Photographs**

Photograph 1 : Overall view of Dry Dock EUREKA, looking southeast.

Photograph 2 : Overall view of Dry Dock EUREKA, looking northeast.

Photograph 3 : Underwater view of typical marine growth located along outer hull perimeter.

Photograph 4 : Underwater view of typical marine growth towards hull keel.

Photograph 5 : Underwater view of typical hull coating presentation with red coloring.

Photograph 6 : Underwater view of typical sacraficial annode condition.

Appendix E – **Definitions**

Rating	Description
Good	No visible damage, or only minor damage is noted. Structural elements may show very minor deterioration, but no overstressing is observed. No repairs are required.
Satisfactory	Limited minor to moderate defects or deterioration are observed, but no overstressing is observed. No repairs are required.
Fair	All primary structural elements are sound, but minor to moderate defects or deterioration is observed. Localized areas of moderate to advanced deterioration may be present but do not significantly reduce the load-bearing capacity of the structure. Repairs are recommended, but the priority of repairs is low.
Poor	Advanced deterioration or overstressing is observed on widespread portions of the structure but does not significantly reduce the load-bearing capacity of the structure. Repairs may need to be carried out with moderate urgency.
Serious	Advanced deterioration, overstressing, or breakage may have significantly affected the load-bearing capacity of primary structural components. Local failures are possible and load restrictions may be necessary. Repairs may need to be carried out on a high-priority basis with urgency.
Critical	Very advanced deterioration, overstressing, or breakage has resulted in localized failure(s) of primary structural components. More widespread failures are possible or likely to occur, and load restrictions should be implemented as necessary. Repairs may need to be carried out on a very high priority basis with strong urgency.

Source: ASCE Manuals and Reports on Engineering Practice No. 101, Underwater Investigations Standard Practice Manual, 2001; Table 2-4.

Inspection Level	Scope of Work Overview	Detectable Defects in Steel		
Level I	Visual or tactile inspection of underwater components without removal of marine growth			
Level II	Partial marine growth removal of a statistically representative sample – typically 10% of all components.	Moderate mechanical damage Corrosion pitting and loss of section		
Level III	Nondestructive testing (NDT) or partially destructive testing (PDT) of a statistically sample – typically 5% of all components. May consist of PDT of wood and remaining thickness measurements of steel components.	Thickness of material Electrical potentials for cathodic protection		

Source: ASCE Manual, Underwater Investigations Standard Practice Manual, 2001.

Appendix F – Interpolated Tide Tables

Dry Dock Eureka

Monday 3/6/2017

Time	Mins Differend	e MLLW (ft	
6:	05	- 6.26	3 High
		0 6.12	
		5 5.90	
		5 5.69	
		5 5.47	
		5 5.26	
		5 5.05	
		5 4.83	
		5 4.62	
		5 4.40	
		5 4.19	
		5 3.97	
		5 3.97 5 3.76	
		5 3.55	
		5 3.33	
		5 3.12	
10:		5 2.90	
10:		5 2.69	
10:		5 2.47	
10:		5 2.26	
11:		5 2.04	
11:		5 1.83	
11:		5 1.62	
11:		5 1.40	
12:		5 1.19	
12:		5 0.97	
12:		5 0.76	
12:		5 0.54	
13:		5 0.33	
13:		5 0.12	2
13:			3 Low
13:	30	9 0.13	
13:	45 1	5 0.31	
14:	00 1	5 0.48	B Difference between the high and low is: 4.88 ft
14:	15 1	5 0.65	
14:	30 1	5 0.83	B Difference between the MLLW high/low time is: 7:03 or 423 mins
14:	45 1	5 1.00	
15:	00 1	5 1.17	Slope per min: 0.011537 ft/min
15:	15 1	5 1.35	
15:		5 1.52	
15:		5 1.69	
16:		5 1.86	
16:		5 2.04	
16:		5 2.21	
16:		5 2.38	
17:		5 2.56	
17:		5 2.73	
17:		5 2.90	
17:		5 3.08	
	45 1		
18.			
18: 18:	00 1	5 3.25	i de la constante de
18:	00 1 15 1	5 3.25 5 3.42	
18: 18:	00 1 15 1 30 1	5 3.25 5 3.42 5 3.59	
18: 18: 18:	00 1 15 1 30 1 45 1	5 3.25 5 3.42 5 3.59 5 3.77	
18: 18: 18: 19:	00 1 15 1 30 1 45 1 00 1	5 3.25 5 3.42 5 3.59 5 3.77 5 3.94	
18: 18: 18: 19: 19:	00 1 15 1 30 1 45 1 00 1 15 1	5 3.25 5 3.42 5 3.59 5 3.77 5 3.94 5 4.11	
18: 18: 18: 19: 19: 19:	00 1 15 1 30 1 45 1 00 1 15 1 30 1	5 3.25 5 3.42 5 3.59 5 3.77 5 3.94 5 4.11 5 4.29	5 2 9 7 4
18: 18: 18: 19: 19: 19: 19:	00 1 15 1 30 1 45 1 00 1 15 1 30 1 45 1	5 3.25 5 3.42 5 3.59 5 3.77 5 3.94 5 4.11 5 4.29 5 4.46	
18: 18: 19: 19: 19: 19: 19: 20:	00 1 15 1 30 1 45 1 00 1 15 1 30 1 45 1 00 1 30 1 45 1 00 1	5 3.25 5 3.42 5 3.59 5 3.77 5 3.94 5 4.11 5 4.29 5 4.46 5 4.63	
18: 18: 18: 19: 19: 19: 19:	00 1 15 1 30 1 45 1 00 1 30 1 45 1 00 1 15 1 00 1 15 1 15 1 15 1	5 3.25 5 3.42 5 3.59 5 3.77 5 3.94 5 4.11 5 4.29 5 4.46 5 4.63 5 4.81	

Dry Dock Eureka	
Tuesday	3/

Time	Mins Difference	MLLW (ft)				
7:14	-	6.31 High				
7:15		6.29				
7:30		6.07	Difference between the high and low is:	6.53 ft		
7:45		5.84				
8:00		5.61	Difference between the MLLW high/low time is:	7:12	or	432 mins
8:15		5.39	-			
8:30		5.16	Slope per min:	0.015116 ft	/min	
8:45		4.93				
9:00		4.71				
9:15		4.48				
9:30		4.25				
9:45		4.03				
10:00	15	3.80				
10:15	15	3.57				
10:30	15	3.35				
10:45	15	3.12				
11:00	15	2.89				
11:15	15	2.67				
11:30	15	2.44				
11:45		2.21				
12:00	15	1.99				
12:15		1.76				
12:30	15	1.53				
12:45	15	1.31				
13:00	15	1.08				
13:15		0.85				
13:30		0.63				
13:45		0.40				
14:00		0.17				
14:15		-0.05				
14:26	11	-0.22 Low				
14:30	4	-0.17				
14:45		0.03				
15:00		0.23	Difference between the high and low is:	5.46 ft		
15:15		0.42				
15:30		0.62	Difference between the MLLW high/low time is:	6:57	or	417 mins
15:45		0.81				
16:00		1.01	Slope per min:	0.013094 ft	/min	
16:15		1.21				
16:30		1.40				
16:45		1.60				
17:00		1.80				
17:15		1.99				
17:30		2.19				
17:45		2.39				
18:00		2.58				
18:15		2.78				
18:30		2.97				
18:45		3.17				
19:00		3.37				
19:15		3.56				
19:30		3.76				
19:45		3.96				
20:00		4.15				
20:15		4.35				
20:30		4.55				
20:45		4.74				
21:00		4.94				
21:15		5.14 5.24 High				
21:23	8	5.24 High				

Dry Dock Eureka

Wednesday 3/8/2017

me	Mins Difference	MLLW (ft)			
8:19		6.39 High			
8:30		6.21			
8:45		5.97	Difference between the high and low is:	6.79 ft	
9:00		5.73	C C		
9:15		5.49	Difference between the MLLW high/low time is:	7:02 or	422 mins
9:30		5.25			
9:45		5.01	Slope per min:	0.01609 ft/min	
10:00		4.76			
10:15		4.52			
10:30		4.28			
10:45		4.04			
11:00		3.80			
11:15		3.56			
11:30		3.32			
		3.08			
11:45 12:00		2.83			
12:15		2.59			
12:30		2.35			
12:45		2.11			
13:00		1.87			
13:15		1.63			
13:30		1.39			
13:45		1.14			
14:00		0.90			
14:15		0.66			
14:30		0.42			
14:45		0.18			
15:00		-0.06			
15:15		-0.30			
15:21		-0.40 Low			
15:30		-0.27			
15:45		-0.05			
16:00		0.16	Difference between the high and low is:	5.92 ft	
16:15		0.38			
16:30			Difference between the MLLW high/low time is:	0.00	410 mins
16.45		0.60		6:50 or	
16:45	5 15	0.81			
17:00	5 15 0 15	0.81 1.03		0.014439 ft/min	
17:00 17:15	5 15) 15 5 15	0.81 1.03 1.25			
17:00	5 15) 15 5 15	0.81 1.03			
17:00 17:15 17:30 17:45	5 15 5 15 5 15 0 15 5 15	0.81 1.03 1.25 1.46 1.68			
17:00 17:15 17:30 17:45 18:00	5 15 5 15 5 15 5 15 5 15 0 15	0.81 1.03 1.25 1.46 1.68 1.90			
17:00 17:15 17:30 17:45 18:00 18:15	5 15 5 15 5 15 5 15 5 15 5 15 5 15	0.81 1.03 1.25 1.46 1.68 1.90 2.11			
17:00 17:15 17:30 17:45 18:00 18:15 18:30	5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15	0.81 1.03 1.25 1.46 1.68 1.90 2.11 2.33			
17:00 17:15 17:30 17:45 18:00 18:15	5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15	0.81 1.03 1.25 1.46 1.68 1.90 2.11			
17:00 17:15 17:30 17:45 18:00 18:15 18:30	5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15	0.81 1.03 1.25 1.46 1.68 1.90 2.11 2.33			
17:00 17:15 17:30 17:45 18:00 18:15 18:30 18:45	5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15	0.81 1.03 1.25 1.46 1.68 1.90 2.11 2.33 2.55			
17:00 17:15 17:30 17:45 18:00 18:15 18:30 18:45 19:00	5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15	0.81 1.03 1.25 1.46 1.68 1.90 2.11 2.33 2.55 2.76			
17:00 17:15 17:30 17:45 18:00 18:15 18:30 18:45 19:00 19:15	5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15	0.81 1.03 1.25 1.46 1.68 1.90 2.11 2.33 2.55 2.76 2.98			
17:00 17:15 17:30 17:45 18:00 18:15 18:30 18:45 19:00 19:15 19:30 19:45	5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15	0.81 1.03 1.25 1.46 1.68 1.90 2.11 2.33 2.55 2.76 2.98 3.20 3.41			
17:00 17:15 17:30 17:45 18:00 18:15 18:30 18:45 19:00 19:15 19:30	5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15	0.81 1.03 1.25 1.46 1.68 1.90 2.11 2.33 2.55 2.76 2.98 3.20 3.41 3.63			
17:00 17:15 17:30 17:45 18:00 18:15 18:30 18:45 19:00 19:15 19:30 19:45 20:00 20:15	i 15 j 15 i 15 j 15	0.81 1.03 1.25 1.46 1.68 1.90 2.11 2.33 2.55 2.76 2.98 3.20 3.41 3.63 3.85			
17:00 17:15 17:30 17:45 18:00 18:15 18:30 18:45 19:00 19:15 19:30 19:45 20:00 20:15 20:30	5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15	0.81 1.03 1.25 1.46 1.68 1.90 2.11 2.33 2.55 2.76 2.98 3.20 3.41 3.63 3.85 4.06			
17:00 17:15 17:30 17:45 18:00 18:15 18:30 18:45 19:00 19:15 19:30 19:45 20:00 20:15 20:30 20:45	i 15	0.81 1.03 1.25 1.46 1.68 1.90 2.11 2.33 2.55 2.76 2.98 3.20 3.41 3.63 3.85 4.06 4.28			
17:00 17:15 17:30 17:45 18:00 18:15 18:30 18:45 19:00 19:15 19:30 19:45 20:00 20:15 20:30 20:45 21:00	i 15 j 15	0.81 1.03 1.25 1.46 1.68 1.90 2.11 2.33 2.55 2.76 2.98 3.20 3.41 3.63 3.85 4.06 4.28 4.49			
17:00 17:15 17:30 17:45 18:00 18:15 18:30 18:45 19:00 19:15 19:30 19:45 20:00 20:15 20:30 20:45 21:00 21:15	i 15	0.81 1.03 1.25 1.46 1.68 1.90 2.11 2.33 2.55 2.76 2.98 3.20 3.41 3.63 3.85 4.06 4.28 4.49 4.71			
17:00 17:15 17:30 17:45 18:00 18:15 18:30 18:45 19:00 19:15 19:30 19:45 20:00 20:15 20:30 20:45 21:00 21:15 21:30	i 15	0.81 1.03 1.25 1.46 1.68 1.90 2.11 2.33 2.55 2.76 2.98 3.20 3.41 3.63 3.85 4.06 4.28 4.49 4.71 4.93			
17:00 17:15 17:30 17:45 18:00 18:15 18:30 18:45 19:00 19:15 19:30 19:45 20:00 20:15 20:30 20:45 21:00 21:15	i 15 i 15	0.81 1.03 1.25 1.46 1.68 1.90 2.11 2.33 2.55 2.76 2.98 3.20 3.41 3.63 3.85 4.06 4.28 4.49 4.71			

Dry Dock Eureka Thursday 3

3/9/2017

ne	Mins Difference	MLLW (ft)			
9:18	-	6.46 High			
9:30		6.26			
9:45	15	6.00	Difference between the high and low is:	6.94 ft	
10:00	15	5.75			
10:15	15	5.50	Difference between the MLLW high/low time is:	6:50 or	410 mins
10:30	15	5.24			
10:45	15	4.99	Slope per min: 0	0.016927 ft/min	
11:00	15	4.73			
11:15	15	4.48			
11:30	15	4.23			
11:45	15	3.97			
12:00	15	3.72			
12:15	15	3.46			
12:30	15	3.21			
12:45	15	2.96			
13:00	15	2.70			
13:15	15	2.45			
13:30	15	2.19			
13:45	15	1.94			
14:00	15	1.69			
14:15	15	1.43			
14:30	15	1.18			
14:45	15	0.92			
15:00	15	0.67			
15:15	15	0.42			
15:30	15	0.16			
15:45	15	-0.09			
16:00	15	-0.34			
16:08	8	-0.48 Low			
16:15	7	-0.37			
16:30	15	-0.14			
16:45	15	0.09	Difference between the high and low is:	6.22 ft	
17:00	15	0.32			
17:15	15	0.55	Difference between the MLLW high/low time is:	6:44 or	404 mins
17:30	15	0.78			
17:45	15	1.01	Slope per min: 0	0.015396 ft/min	
18:00	15	1.24			
18:15	15	1.48			
18:30	15	1.71			
18:45	15	1.94			
19:00	15	2.17			
19:15	15	2.40			
19:30	15	2.63			
19:45	15	2.86			
20:00	15	3.09			
20:15	15	3.32			
20:30	15	3.55			
20:45	15	3.78			
21:00		4.02			
21:15	15	4.25			
21:30		4.48			
21:45	15	4.71			
22:00		4.94			
22:15	15	5.17			
22:30	15	5.40			
22.50					
22:30	15	5.63			

Appendix F

Interior Compartment Inspection Notes

3/2 113AM Tank GA Wall 49(S. Wall) Horizontel = 6.53" 12" From E wall, 59" height Vertical = 0.63" 12 mil. Coating _. 340 - . 352 Transverse = 0.58" (1)-, 324 5ml 370 . 362 52 . 346 14 . mil 9 m.d (2) Tank GA East Wall -380 10 Et. from Node Will 7ml 392 66" height 7ml 392 2 390 10al 7ml , 391 7 390 7m ,391 3 Tank GA North Wall 13-1 ,465 . 464 2 234" From E Wall 8 nl . 479 ,482 51" height 8-1 .467 - ,482 .478 10ml. 459 D Tark 6A West Will 59" from N Wall 13-2 15ml .381 . 391 5ml . 402 Sml , 396 53" height 19-1 ,397 - .395 ,397 13ml ,378 Tank 6A Inghe Wing Will Competent Lower First West Wall .442 26" from N Wall 9 mil . 440 - .440 6 ml , 443 47" height - , 449 8 ml m 432 12m/ 0410 1 449

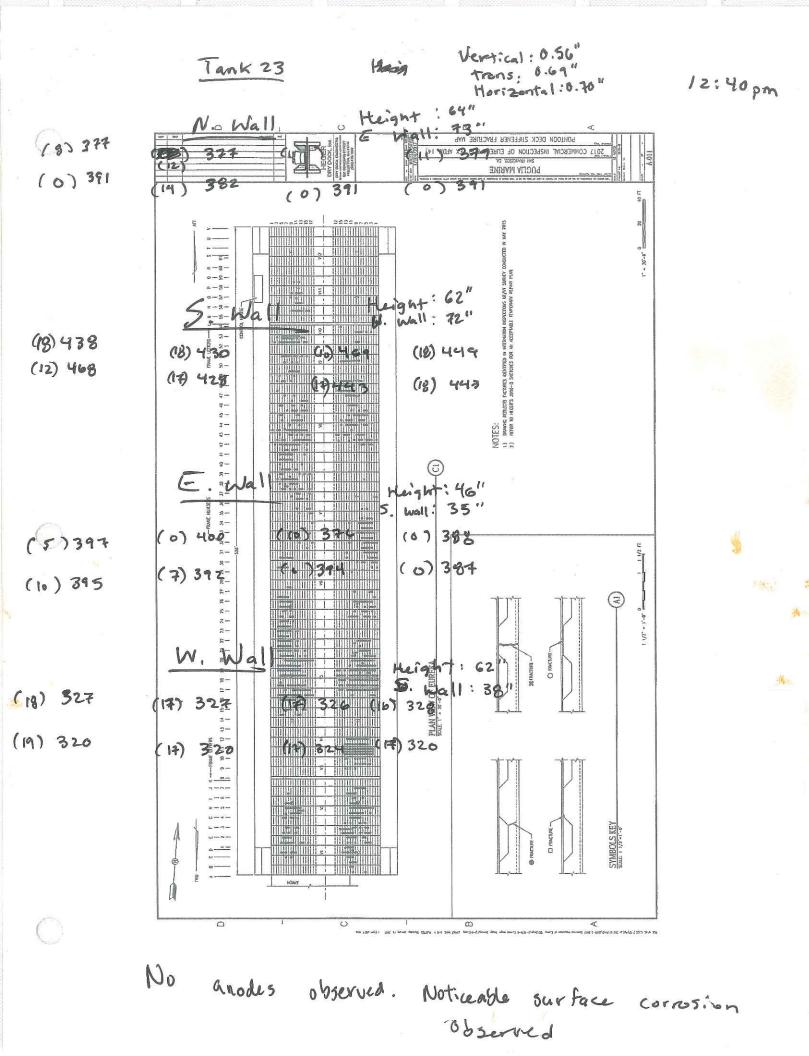
6 R ?. FT=Flange Thickness Horizontal Beam Transverse Vertical thickness Flange" = 0.53" Coaking in tact coating intact FT = 0.58" FT=0.63" 5-A Horizontal Beam Transverse Vertical FT= 0.51" FIEDE TT=0.57" 0.64" Tunk SA 3/2/17 Ven - . 407 East Wall 8-l .388 13-l -380 8-l . 394 38" Fron N Wall 8-l .395 - ,468 55" height 8-1. .389 B 9 mil , 393 North Wall 124 From E. Wall ,528 5-l ,530 58" hup - . 492 5hl ,540 6ml . 504 8ml . 478 .503 gml .524 West Wall 112" Fra EWAL 17ml +418 19ml +411 18 mls . 420 58' heigh 11 ~ 414 10 ml . 430 16mh .416 18-2 1415 14-2 - 416 South Wall 105" from NWall 16ml, +401 20ml 381 72" herent 17ml, , 386 6ml . 403 2010 ml, , 382 7ml ,405 15 ml . 395 5ml ,407

March 3,2017 6.50 AM	
Tank 20 A Vertect Beam = 0.53 Transverse Ben = 0.57"	
South Wall Smrl $0.387 - 0.388$ 13 $0.370 - 0.388$ - 0.391 - 0.386 - 0.391 - 16 - 377	6 392 91" from W. Wall 5 385 7' heigh
	74" From S Wall 57" height 517 87" from W wall 517 75" height
West Wall 17 384 1 394 12 382 9 394 12 398 13 384	6' fron N. Wall 9 393 43" height 13 385

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[Turk B] 7:30 Am	
$V_{2}+t: c_{M} = 0.64^{*}$ E art Wall (17AR) 0.968 (8) 345 (15) 382 (-) 341 (3) 389 (14) 372 (13) 403 (-) 283 Wart Wall (4) 385 (20) 362 (6) 375 (-) 387 51" height (5) 382 (20) 375 (8) 398 (14) 370 51" height (5) 382 (20) 375 (8) 398 (14) 370 51" height (-) 378 (6) 346 (-) 363 (12) 355 (4) 336 (-) 386 (19) 338 (12) 356 Son 714 WALL NOT Accessible Due To Fice Pire [TANK 7] 5 8:05 PAR Theorem 0.67" Virted : 269" Her 252" (12) 407 (11) 310 (19) 404 (12) 403 (12) 407 (11) 310 (19) 404 (12) 403 Son the Wall (13) 407 (11) 310 (19) 404 (12) 403 Son the Wall (14) 406 (19) 434 (-) 425 (38" from E. Web (15) 591 (19) 406 (19) 434 (-) 425 (38" from S. Web (16) 407 (16) 314 (19) 404 (12) 403 Son the Wall (17) 298 (18) 394 (14) 397 (17) 294 794 from S. Web (18) 408 (-) 422 (-) 420 (1) 423 (38" from S. Web Wert Wall (19) 309 (19) 347 (17) 294 794 from S. Web (19) 354 (19) 394 (19) 397 (17) 294 794 from S. Web (19) 408 (-) 422 (-) 420 (1) 423 (19) 404 (10) 403 Son the Wall (10) 354 (19) 394 (19) 397 (17) 294 794 from S. Web (11) 354 (19) 369 (16) 391 (16) 391 10' height (16) 354 (16) 287 (20) 361 (20) 370 10' height (16) 354 (16) 287 (20) 361 (20) 361 (16) 370 10' height (16) 354 (16) 287 (20) 361 (20) 361 (16) 370 10' height (16) 354 (16) 287 (20) 361 (20) 361 (16) 370 10' height (16) 354 (16) 287 (20) 361 (20) 361 (20) 370 10' height (16) 354 (16) 287 (20) 361 (20) 361 (20) 370 10' height (10) 354 (10) 287 (20) 361 (20) 361 (20) 370 10' height (10) 354 (10) 287 (20) 361 (20) 361 (20) 370 10' height (11) 407 (10) 287 (20) 361 (20) 361 (20) 370 10' height (12) 414 414 (13) 415 (16) 287 (20) 361 (20) 361 (20) 370 10' height (14) 414 414 (15) 354 (16) 287 (20) 361 (20) 370 10' height (16) 3574 (16) 287 (20) 361 (20) 370 10' height (16) 3574 (16) 287 (20) 361 (20) 370 10' height (16) 3574 (16) 287 (20) 361 (20) 370 10' height (16) 3574 (17) 70 70 70 70 70 70 70 70 70 70 70 70 70		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	East Wall	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(17~2) 0.36B (8) 345 (15) 382 (-) 391	~40° S.Vall
(b) 385 (22) 362 (c) 375 (-) 387 51° height (5) 382 (28) 375 (8) 398 (14) 370 51° height (-) 378 (6) 346 (-) 363 (22) 355 (9) 336 (-) 386 (14) 338 (22) 355 (9) 336 (-) 386 (14) 338 (22) 368 50-714 WALC NOT Accessible Dup To Fill Pipe [ThNK 7] 5 $3:05$ RF Tansmes = 0.67° Unterly in the equal (15) 516 (19) 406 (11) 399 (12) 406 99° height (12) 407 (11) 316 (14) 404 (12) 403 565124 WAL NOT Accessible North Wall (8) 408 (-) 422 (15) 406 (17) 4344 (-) 425 38° from E. Woll (19) 406 (17) 4344 (-) 425 38° from E. Woll Went Wall (10) 405 (17) 4344 (-) 425 38° from E. Woll (11) 407 (11) 316 (14) 423 63° height Went Wall (12) 408 (-) 422 (-) 420 (1) 423 63° height Went Wall (13) 365 (18) 380 (16) 391 (10) 291 (10) 2944 79° from S. Well (16) 3544 (10) 287 (22) 361 (16) 370 (10) 10° height (10) 15° height (11) 354 (12) 267 (22) 361 (16) 370 (15) height (16) 3544 (17) 287 (22) 361 (16) 370 (16) height (16) 3544 (17) 287 (22) 361 (16) 370 (16) height		
(3) 382 (20) 375 (8) 576 (14) 570 North Well (-) 378 (6) 346 (-) 363 (12) 355 (9) 336 (-) 386 (19) 338 (12) 368 South WALL NUT Accessible Due TO Fill Pire (TANK X) 5 3.05 RF Transmos = 0.67° Verted = 269° Hore 252° (A) 407 (11) 316 (14) 406 (11) 399 (12) 406 (12) 407 (11) 316 (14) 404 (12) 403 South WAL (13) 407 (11) 316 (14) 404 (12) 403 South WAL (13) 406 (13) 434 (-) 425 South WAL (14) 406 (17) 434 (-) 425 (15) 408 (-) 422 (-) 420 (17) 394 (17) 248 (18) 394 (14) 397 (17) 394 Wert Wall (18) 408 (-) 422 (19) 406 (19) 423 Wert Wall (19) 380 (19) 397 (17) 394 (19) 504 (18) 394 (14) 397 (17) 394 (17) 218 (18) 394 (19) 397 (17) 394 (19) 504 (19) 380 (19) 391 (10) 391 (10) 10° height (16) 3574 (10) 287 (22) 369 (16) 370 (10) height (11) 10° height (12) 10° height (13) 10° height (14) 376 (15) 287 (22) 369 (16) 370 (15) height (16) 354 (16) 287 (22) 369 (16) 370 (16) 10° height (17) 10° height (18) 10° height (19) 10° height (10) 10° height (10) 10° (10) 287 (22) 369 (16) 370 (10) 10° height (11) 10° height (12) 10° height (13) 10° height (14) 10° height (15) 10° (17) 247 (17) 249 (17) 10° height (16) 3574 (17) 247 (22) 369 (16) 370 (18) height (19) 10° height (10) 10° height (11) 10° height (12) 10° height (13) 10° height (14) 10° height (15) 10° (17) 247 (17) 249 (17) 270 (17) 10° height (16) 10° 10° height (17) 10° height (18) 10° height (19) 10° height (19) 10° height (10) 10° height (11) 10° (11) 10° (12) 10° height (12) 10° height (13) 10° height (14) 10° height (15) 10° (17) 10° (17) 10° (17) 10° (17) 10° (18) 10° (18) 10° (19) 10° height (19)	(6) 385 (22) 362 (6) 375 (-) 387	
$\frac{\text{Night Wall}}{(4) 378} = (6) 346 = (-) 363 = (2) 355} = (7) 378 = (6) 346 = (-) 363 = (2) 355} = (7) 336 = (-) 386 = (19) 338 = (10) 368} = (7) 336 = (-) 386 = (19) 338 = (10) 368} = (7) 366 = (7) 466 $	(3) Jua (0) J	
(9) 336 (-) 386 (19) 338 (12) 368 So-714 WALL NUT Accessible Due TO FILL PIPE ThiNK M S 8:05 RF Thisses = 0.67 Verted = 0.69 Here = 0.69 RATE UNI (15) 596 (19) \$106 (1) 399 (10) 406 99" height (15) 596 (19) \$106 (1) 399 (10) 406 99" height (12) \$107 (11) 396 (19) 404 (12) 403 Wall Some WAR Accessible North Wall (8) 422 (15) 406 (17) \$244 (-) 425 88" from E. Well (8) 422 (15) 406 (17) \$244 (-) 425 63" height Went Wall (8) 408 (-) 422 (-) 420 (1) 423 63" height Went Wall (27) 298 (18) 394 (14) 347 (17) 394 794 from S. Wall (27) 298 (18) 394 (14) 347 (17) 394 10' height (27) 298 (18) 394 (14) 347 (17) 394 10' height (27) 218 (18) 394 (14) 347 (17) 394 10' height (27) 218 (18) 394 (14) 347 (16) 394 10' height (28) 408 (18) 394 (14) 347 (17) 394 10' height (28) 365 (18) 380 (16) 389 (16) 394 10' height (29) 365 (18) 380 (16) 389 (16) 394 10' height Some Male		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\frac{1}{[ThNK 2]} = \frac{1}{3} \cdot 35 \text{ RF} Transmers = 0.67^{\circ} Virted = 0.67^{\circ} there a 52^{\circ}} \\ \frac{1}{[ChNK 2]} = \frac{1}{3} \cdot 35 \text{ RF} Transmers = 0.67^{\circ} Virted = 0.67^{\circ} there a 52^{\circ}} \\ \frac{1}{[ChNK 2]} = \frac{1}{3} \cdot 35 \text{ RF} Transmers = 0.67^{\circ} Virted = 0.67^{\circ} there a 52^{\circ}} \\ \frac{1}{[ChNK 2]} = \frac{1}{[ChNK$		FILL PIPE
$\frac{\mathcal{R}_{AYY}}{(15)} \frac{\sqrt{AU}}{(15)} \frac{\sqrt{AU}}{(15)}$	ITANK 7 = B:05 AF Transvers = 0.67"	Vertical = 0.69' Hur. = 0.52'
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
(12) 407 (11) 310 (14) 101 ((15) 396 (19) \$106 (11) 399 (12) 406	99" height from S. Wall
North Wall (8) 422 (13) 406 (17) 424 (-7 425 $38'' \text{ from } F. Well$ (8) 408 (-7) 422 (-7) 420 (1) 423 $63'' \text{ height}$ Went Wall (27) 298 (18) 394 (14) 397 (17) 394 $79'' \text{ from } S. Wall$ (27) 398 (18) 394 (14) 397 (17) 394 $79'' \text{ from } S. Wall$ (27) 398 (18) 394 (14) 397 (17) 394 $10' \text{ height}$ (27) 398 (18) 399 (16) 391 (16) 394 $10' \text{ height}$ (27) 398 (18) 380 (16) 381 (16) 394 $10' \text{ height}$ (27) 398 (18) 380 (16) 381 (16) 370 $10' \text{ height}$		
(8) 422(13) 406(17) 434(-) 425 $38"$ from E. Well(8) 408(-) 422(-) 420(1) 423 $63"$ heightWent Wall(12) 394(-) 420(1) 423 $63"$ height(27) 398(18) 394(14) 397(17) 394 $79"$ from S. Wall(27) 398(18) 394(14) 397(17) 394 $79"$ from S. Wall(27) 398(18) 394(14) 397(17) 394 $79"$ from S. Wall(27) 398(18) 380(16) 389(16) 39410' height(22) 365(18) 380(16) 389(16) 39410' height(16) 354(10) 287(22) 369(16) 37010' height	Soncy wood Nor ACCESSTBLE	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	North Wall	
West Wall (27)398 (18) 394 (14) 397 (17) 394 794 Flon S. Wall (27)398 (18) 394 (16) 389 (16) 394 10' height (222)365 (18) 380 (16) 389 (16) 394 10' height Source UML (16) 354 (10) 387 (22) 369 (16) 370 10' height		
(27)398 (18) 394 (14) 397 (17) 399 (22)365 (18) 380 (16) 389 (16) 394 10' height (22)365 (18) 380 (16) 389 (16) 394 10' height (16) 354 (10) 387 (22) 369 (16) 370 10' height		es neight
(227) 390 (18) 380 (16) 389 (16) 394 10 height (222) 365 (18) 380 (16) 389 (16) 394 10 height (16) 354 (10) 387 (22) 369 (16) 370 101 height	- Cui) 2017 (17) 399	
(16) 354 (10) 387 (22) 369 (16) 370 101 height	(51) 390 (16) 389 (16) 394	10° height
(14) 515 (11) 360 (20) 364 (13) 366 6 $(100$ $WWA)$	(16) 354 (10) 387 (22) 369 (16) 370 (14) 373 (17) 360 (20) 364 (13) 366	6' From W Way

1.1

Tank 22 West Wall 74" N. Wall Transverse: 0.61" Verricol: 0.61" Transverse: 0.68" Korizoutal:	
59" Height (B) 409 (9) 425 (8) 408 (7) 408 (5) 421 (0) 420 (8) 908 (7) 408	
South Wall 81" Height 28" W. Wall (-) 405 (11) 385 (+) 404 (13) 385 (B) 402 (-) 407% (-) 407 (11) 386	
East Wall By " Height 73" 5. Wall (8) 386 (13)372 (9) 386 (12) 372 (13) 373 (12)373 (13) 373 (14) 382	
North Wall 83" Height 25" E. Wall	


(1) 499	(11) 501	(h)	479	(18) 499
(11) 502	(1) 504	(11)	500	(11) 496

3/3/17 9:45 am

9:55 AM

	West Wall	Height: 55" S.Wall: 34"	Vertical: 0.52" Trans: 0.63"	9. By 14 M
	(19)388 (11)386 (9)386 (11)386	(6) 398 (8) 386 (10) 386 (8) 386	Horizontal; 0.52"	Tank 8
	(13) 390 (5)401 (7) 404 (-) 399 North Wall Hei W.	Sht: 60 " Nall: 62"	OSURE 1 Deck UT Data	
		(10) 411 (0) 406 (11) 406 (0) 416 gh-1: 69" wall: 79"	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
ALL ALL ALL	fo) 405 (0) 413 (2) 395 (0) 413	(0) 411 (3) 404 (13) 388 (3) 407		
7		(13)340 (0)369 (0)361 (0)367	Vertical: 0.52" Trans: 5.67" Horizontal: 0.41"	10:59 AM Tank 7
	(16) 365 (11) 385 (11)	*: 54 ** : 56 ** こ) 374 (6)388 こ) 389 (0)385		
۲ ۲		83'		
	10 0.			

South 11 11 50"	Vertica): 0.63" Trans: 0.73 Horizontal: 0.53"	11:37am Tank 9	
East Wall Height: 54" N. Hell: 123" (14) 388 (13) 382 (14) 389 (14) 385 (15) 387 (14) 387 (13) 388 (12) 388	* *		
North Wall Height: 39" E. Wall: 40" (11) 370 (1) 381 (1) 384 (0) 384 (0) 389 ENCLO (0) 386 (10) 368 (0) 380 Pontoon Deck Stiff	SURE 2 fener Fracture Map	and the second s	
(2) 408 (0) 404 (8) 405 (0) 412 (0) 419 (0) 410 (0) 409 (0) 419			· · · · · · · · · · · · · · · · · · ·
North Wall Height: 59" W. Wall: 63" (10) 371 (10) 372 (11) 387 (8) 385 (9) 372 (7) 385 (8) 385 (7) 386	Vertical: 0.61" Trans: 0.67" Horizontal: 0.45"	Tank 10 12:07 pm	***
West Wall Height: 60" (7)358 N. wall: 61" (12)357 (3)344 (0)379 (0)358 (12)357 (3)340 (8)343 (0)367			
01, 303	387) 397		
East wall Height: 42.11 Warright (15) 376 (0) 391 (0) (16) 376 (20) 372	63) 300	(2) 377	

Appendix G

Deck Inspection Notes

т т

	INTERNATIONAL INSPECTION, 1	INC
	NORTH	
BHD V -	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.26 0.27 0.30 0.27 (41%) (38%) (31%) (38%) 0.24 0.28 0.27 0.38 (45%) (36%) (38% (13%)
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
BHD 59	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
		0.35 0.38 0.34 0.28 (20%) (13%) (22%) (36%)
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
BHD 54 -		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$ \begin{array}{c} 0.30 \\ (317) \\ (527) \\ (67) \\$	
	0.28 0.29 0.31 0.27 0.35 0.33 0.34 0.32 0.29 0.32 (36%) (34%) (29%) (38%) (20%) (25%) (22%) (27%) (34%) (27%) (29%)	() (0.46) (0.40) (0.36 (0.28) () (0%) (9%) (18%) (36%)

0.35 0.40 0.31 (0.38) 0.25 0.24 0.47 0.42 (0.40) 0.32 (0.34 0.31 0.30 0.37 0.20 (20%) (9%) (29%) (13%) (43%) (45%) (0%) (4%) (9%) (27%) (22%) (29%) (31%) (15%) (54%)

0.17 0.34 0.34 (61%) (22%) (22%) 0.27 0.24 0.33 0.29 0.27 0.49 0.23 0.36 0.40 0.39 0.17 (38%) (45%) (25%) (34%) (38%) 0.69 (0.40 0.39 0.17 (38%) (0%) (47%) (18%) (9%) (11%) (61%) 0.29 0.37 0.34 (34%) (15%) (22%) 0.40 0.31 0.26 0.57 0.40 (29%) (41%) (43%) (27%) (9%) 0.38 0.39 0.24 (13%) (11%) (45%) 0.42 (36%) (41%) 0.28 0.29 0.45 0.25 0.30 0.20 0.40 (34%) (0%) (43%) (31%) (54%) (9%) 0.32 0.40 0.27 (27%) (,9%) 38% (31%) 0.26 (31%) (41\%) (41\%) (0.37) (0.26) (0.37) 0.45 0.21 (9%) (52%) 0.29 0.36 0.24 0.55 (34%) (18%) (25%) (25%) 0.32 2 569 0.30 0.30 0.27 023 041 0.31 032 0.35 0.20 (373) (112) (312) (373) (373) (373) (373) (472) (473) (573) (473) (573) 0.33 (0.4) 0.33 (25%) (6%) (25%) $\begin{array}{c} 0.40 \\ (97) \\ (97) \\ (97) \\ (15\%) \\ (15\%) \\ (15\%) \\ (15\%) \\ (97) \\ (97) \\ (25\%$ 0.32 (0.34 0.28 (27%) (22%) (36%) 0.30 (27%) 0.40 0.33 0.22 0.43 0.40 0.20 0.27 0.39 0.31 (9%) (25%) (50%) (2%) (9%) (3%% (38%) (11%) (29%) 0.28 (36%) 0.33 (25%) 0.41 0.24 (6%) (45%) 0.21 (52%) 0.40 (9%) 0.24 0.35 (45%) (20%) 0.32 0.28 0.37 0.29 0.24 0.39 0.28 (27%) (36%) (15%) (34%) (45%) (41%) (36%) 0.34 (22%) 0.21 (52%) 0.36 0.27 (18%) (38%) 0.24 BHD 42 -0.48 0.36 0.39 0.38 0.49 0.34 0.26 0.32 0.29 0.34 0.43 0.33 0.33 0.44 0.45 (0%) (18%) (11%) (13%) (0%) (22%) (41%) (27%) (34%) (22%) (2%) (2%) (25%) (25%) (0%) (0%) 0.26 0.36 0.38 0.40 0.37 0.36 (41%) (18%) (13%) (9%) (15%) (18%) 0.50 0.44 0.31 0.50 0.24 0.22 0.27 0.24 0.26 (0%) (0%) (29%) (0%) (45%) (50%) (38%) (45%) (41%) $0.43 \quad 0.39 \quad 0.29 \quad 0.30 \quad 0.32 \quad 0.41 \quad 0.19 \quad 0.26 \quad 0.24 \quad 0.24 \quad 0.28 \quad 0.41 \quad 0.39 \quad 0.34 \quad 0.38 \quad 0.$ 0.29 0.31 0.47 0.49 0.49 0.30 (34%) (29%) (0%) (0%) (0%) (31%) $\begin{smallmatrix} 0.48 & 0.37 & 0.48 & 0.37 & 0.40 & 0.40 & 0.40 \\ (0\%) & (15\%) & (0\%) & (15\%) & (9\%) & (0\%) & (0.28 & 0.29 & 0.28 \\ (36\%) & (34\%) & (36\%) & (36\%) \\ \end{split}$ 0.47 0.48 0.32 0.45 0.38 0.48 0.28 0.27 0.23 (0%) (0%) (27%) (0%) (13%) (0%) (36%) (38%) (47%) 0.30 0.30 0.37 0.36 0.34 0.26 0.30 0.27 0.18 (31%) (31%) (15%) (18%) (22%) (41%) (31%) (38%) (59%) 0.33 0.40 0.32 0.26 0.34 0.24 (25%) (9%) (27%) (41%) (22%) (45%) 0.23 0.36 0.29 0.20 0.28 0.38 (47%) (18%) (34%) (54%) (36%) (13%) 0.41 0.41 0.31 0.25 0.40 0.34 0.21 0.27 0.23 (6%) (6%) (29%) (43%) (9%) (22%) (52%) (38%) (47%) 0.46 0.44 0.31 0.36 0.35 0.19 (0%) (0%) (29%) (18%) (20%) (57%) BHD 31 -

NOTE: DRY DOCK DECK .4375"PLT. RED = EXCESSIVE WASTAGE 25% OR GREATER. = READINGS TAKEN IWO DOUBLER FROM UNDERSIDE OF DECK. 3/2/2017				
VESSEL: EUREKA DRY DOCK		MAIN DECK PLATING - NORTH SECTION DESCRIPTION: PLAN VIEW		
drawn by: M. SMITH	JOB # A1268	DWG # MnDk 1 v1.1 DATE: MAY 2015		

GHD Inc 655 Montgomery Street, Suite 1010 San Francisco, CA 94111 T: 415 283 4970 F: 415 283 4980 E: sanfrancisco@ghd.com

© GHD Inc 2017

This document is and shall remain the property of GHD. The document may only be used for the purpose of assessing our offer of services and for inclusion in documentation for the engagement of GHD. Unauthorized use of this document in any form whatsoever is prohibited.

Document Status

Rev	Author	Reviewer		Approved for Issue		
No.		Name	Signature	Name	Signature	Date

www.ghd.com www.telamoninc.com

